Advertisement

Effect of Substrate Surface Roughness on Microstructure and Mechanical Properties of Cold-Sprayed Ti6Al4V Coatings on Ti6Al4V Substrates

  • Adrian Wei-Yee TanEmail author
  • Wen Sun
  • Ayan Bhowmik
  • Jun Yan Lek
  • Xu Song
  • Wei Zhai
  • Han Zheng
  • Feng Li
  • Iulian Marinescu
  • Zhili Dong
  • Erjia LiuEmail author
Peer Reviewed
  • 50 Downloads

Abstract

Surface condition, especially surface roughness of substrates, critically influences the adhesion of cold-sprayed titanium alloy coatings. To study this, Ti6Al4V (Ti64) coatings were deposited on Ti64 substrates with increasing surface roughness (Ra) from 0.05 µm (polished surface) to 5.4 µm (water-jet cut surface). It was found that the substrate surface roughness did not significantly affect the porosity, hardness and coating surface roughness because these properties were dependent on the deposition parameters such as propellant gas pressure and temperature and nozzle traverse speed. The adhesion test results showed that smoother substrate surfaces improved the coating bond strength of the cold-sprayed Ti64 coatings from about 7.1 MPa (Ra: 5.4 µm, interface failure) to 68.7 MPa (Ra: 0.05 µm, glue failure). The fracture characteristics of the debonded coating/substrate interfaces revealed that there were more adiabatic shear-induced craters observed on the smoother substrate surfaces. Finite element modeling also showed that the substrate surface features (i.e., peaks and valleys) possibly prevented the intimate contact between the particles and substrate and thus induced the non-uniform distributions of temperature, stress and strain at the particle/substrate interface.

Keywords

finite element analysis high-pressure cold spray mechanical properties substrate surface condition Ti6Al4V powder/coating/substrate 

Notes

Acknowledgments

This work was financially supported by the National Research Foundation (NRF), Rolls-Royce (RR) and Nanyang Technological University (NTU), Singapore, with the research grant (ARMS 1.1 Advanced metalized coatings using cold spray project).

Supplementary material

11666_2019_926_MOESM1_ESM.docx (814 kb)
Supplementary material 1 (DOCX 814 kb)

References

  1. 1.
    R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng., A, 1996, 213(1), p 103-114CrossRefGoogle Scholar
  2. 2.
    A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V.M. Fomin, Cold Spray Technology, Elsevier, Amsterdam, 2007Google Scholar
  3. 3.
    R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8(4), p 559-564CrossRefGoogle Scholar
  4. 4.
    J. Vlcek, L. Gimeno, H. Huber, and E. Lugscheider, A Systematic Approach to Material Eligibility for the cold-Spray Process, J. Therm. Spray Technol., 2005, 14(1), p 125-133CrossRefGoogle Scholar
  5. 5.
    R.C. McCune, A.N. Papyrin, J.N. Hall, W.L. Riggs II, P.H. Zajchowski, An Exploration of the cold-gas-dynamic spray method for several materials systems, Advances in Thermal Spray Science and Technology, C.C. Berndt, S. Sampath, Eds., ASM International, Materials Park, p 1 (1995)Google Scholar
  6. 6.
    V.F. Kosarev, S.V. Klinkov, A.P. Alkhimov, and A.N. Papyrin, On Some Aspects of Gas Dynamics of the Cold Spray Process, J. Therm. Spray Technol., 2003, 12(2), p 265-281CrossRefGoogle Scholar
  7. 7.
    T. Schmidt, F. Gaertner, and H. Kreye, New Developments in Cold Spray Based on Higher Gas and Particle Temperatures, J. Therm. Spray Technol., 2006, 15(4), p 488-494CrossRefGoogle Scholar
  8. 8.
    M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688CrossRefGoogle Scholar
  9. 9.
    G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.J. Kim, and C. Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57(19), p 5654-5666CrossRefGoogle Scholar
  10. 10.
    G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868CrossRefGoogle Scholar
  11. 11.
    M. Perton, S. Costil, W. Wong, D. Poirier, E. Irissou, J.G. Legoux, A. Blouin, and S. Yue, Effect of Pulsed Laser Ablation and Continuous Laser Heating on the Adhesion and Cohesion of Cold Sprayed Ti-6Al-4V Coatings, J. Therm. Spray Technol., 2012, 21(6), p 1322-1333CrossRefGoogle Scholar
  12. 12.
    W. Sun, A.W.Y. Tan, A. Bhowmik, I. Marinescu, X. Song, W. Zhai, F. Li, and E. Liu, Deposition Characteristics of Cold Sprayed Inconel 718 Particles on Inconel 718 Substrates with Different Surface Conditions, Mater. Sci. Eng., A, 2018, 720, p 75-84CrossRefGoogle Scholar
  13. 13.
    W. Sun, A.W.Y. Tan, N.W. Khun, I. Marinescu, and E. Liu, Effect of Substrate Surface Condition on Fatigue Behavior of Cold Sprayed Ti6Al4V Coatings, Surf. Coat. Technol., 2017, 320, p 452-457CrossRefGoogle Scholar
  14. 14.
    P. Cavaliere and A. Silvello, Processing Parameters Affecting Cold Spay Coatings Performances, The International Journal of Advanced Manufacturing Technology, 2013, 71(1-4), p 263-277CrossRefGoogle Scholar
  15. 15.
    V.S. Bhattiprolu, K.W. Johnson, O.C. Ozdemir, and G.A. Crawford, Influence of Feedstock Powder and Cold Spray Processing Parameters on Microstructure and Mechanical Properties of Ti-6Al-4V cold Spray Depositions, Surf. Coat. Technol., 2018, 335, p 1-12CrossRefGoogle Scholar
  16. 16.
    A.W.Y. Tan, J.Y. Lek, W. Sun, A. Bhowmik, I. Marinescu, X. Song, W. Zhai, F. Li, Z. Dong, C. Boothroyd, and E. Liu, Influence of Particle Velocity When Propelled Using N2 or N2-He Mixed Gas on the Properties of Cold-Sprayed Ti6Al4V Coatings, Coatings, 2018, 8(9), p 327CrossRefGoogle Scholar
  17. 17.
    D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, J.G. Legoux, and E. Irissou, The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats, J. Therm. Spray Technol., 2011, 21(2), p 288-303CrossRefGoogle Scholar
  18. 18.
    N.W. Khun, A.W.Y. Tan, K.J.W. Bi, and E. Liu, Effects of Working Gas on Wear and Corrosion Resistances of Cold Sprayed Ti-6Al-4V Coatings, Surf. Coat. Technol., 2016, 302, p 1-12CrossRefGoogle Scholar
  19. 19.
    K. Binder, J. Gottschalk, M. Kollenda, F. Gärtner, and T. Klassen, Influence of Impact Angle and Gas Temperature on Mechanical Properties of Titanium Cold Spray Deposits, J. Therm. Spray Technol., 2010, 20(1-2), p 234-242CrossRefGoogle Scholar
  20. 20.
    N.W. Khun, A.W.Y. Tan, W. Sun, and E. Liu, Wear and Corrosion Resistance of Thick Ti-6Al-4V Coating Deposited on Ti-6Al-4V Substrate via High-Pressure Cold Spray, J. Therm. Spray Technol., 2017, 26(6), p 1393-1407CrossRefGoogle Scholar
  21. 21.
    A.W.-Y. Tan, W. Sun, A. Bhowmik, J.Y. Lek, I. Marinescu, F. Li, N.W. Khun, Z. Dong, and E. Liu, Effect of Coating Thickness on Microstructure, Mechanical Properties and Fracture Behaviour of Cold Sprayed Ti6Al4V Coatings on Ti6Al4V Substrates, Surf. Coat. Technol., 2018, 349, p 303-317CrossRefGoogle Scholar
  22. 22.
    N.W. Khun, A.W.Y. Tan, W. Sun, and E. Liu, Effects of Nd:YAG Laser Surface Treatment on Tribological Properties of Cold-Sprayed Ti-6Al-4V Coatings Tested against 100Cr6 Steel under Dry Condition, Tribol. Trans., 2019, 62(3), p 391-402CrossRefGoogle Scholar
  23. 23.
    N.W. Khun, A.W.Y. Tan, W. Sun, and E. Liu, Effect of Heat Treatment Temperature on Microstructure and Mechanical and Tribological Properties of Cold Sprayed Ti-6Al-4V Coatings, Tribol. Trans., 2016, 60, p 1-10Google Scholar
  24. 24.
    T. Samson, D. MacDonald, R. Fernández, and B. Jodoin, Effect of Pulsed Waterjet Surface Preparation on the Adhesion Strength of Cold Gas Dynamic Sprayed Aluminum Coatings, J. Therm. Spray Technol., 2015, 24(6), p 984-993CrossRefGoogle Scholar
  25. 25.
    R. Fernández, D. MacDonald, A. Nastić, B. Jodoin, A. Tieu, and M. Vijay, Enhancement and Prediction of Adhesion Strength of Copper Cold Spray Coatings on Steel Substrates for Nuclear Fuel Repository, J. Therm. Spray Technol., 2016, 25(8), p 1577-1587CrossRefGoogle Scholar
  26. 26.
    T. Hussain, D.G. McCartney, P.H. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379CrossRefGoogle Scholar
  27. 27.
    Q. Blochet, F. Delloro, F. N’Guyen, D. Jeulin, F. Borit, and M. Jeandin, Effect of the Cold-Sprayed Aluminum Coating-Substrate Interface Morphology on Bond Strength for Aircraft Repair Application, J. Therm. Spray Technol., 2017, 26(4), p 671-686CrossRefGoogle Scholar
  28. 28.
    S.I. Imbriglio, N. Brodusch, M. Aghasibeig, R. Gauvin, and R.R. Chromik, Influence of Substrate Characteristics on Single Ti Splat Bonding to Ceramic Substrates by Cold Spray, J. Therm. Spray Technol., 2018, 27(6), p 1011-1024CrossRefGoogle Scholar
  29. 29.
    S. Theimer, M. Graunitz, M. Schulze, F. Gaertner, and T. Klassen, Optimization Adhesion in Cold Spraying onto Hard Substrates: A Case Study for Brass Coatings, J. Therm. Spray Technol., 2019, 28(1-2), p 124-134CrossRefGoogle Scholar
  30. 30.
    T. Marrocco, D.G. McCartney, P.H. Shipway, and A.J. Sturgeon, Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Therm. Spray Technol., 2006, 15(2), p 263-272CrossRefGoogle Scholar
  31. 31.
    J. Wu, J. Yang, H. Fang, S. Yoon, and C. Lee, The Bond Strength of Al-Si Coating on Mild Steel by Kinetic Spraying Deposition, Appl. Surf. Sci., 2006, 252(22), p 7809-7814CrossRefGoogle Scholar
  32. 32.
    H. Mäkinen, J. Lagerbom, P. Vuoristo, Adhesion of Cold Sprayed Coatings: Effect of Powder, Substrate, and Heat Treatment, Thermal Spray: Global Coating Solutions, B.R. Marple, M.M. Hyland, Y. Lau, C. Li, R.S. Lima, G. Montavon, Eds., May 14-16, 2007 (Beijing, People’s Republic of China), ASM International, 2007, p 31-36Google Scholar
  33. 33.
    K. Sakaki, T. Tajima, H. Li, S. Shinkai, Y. Shimizu, Influence of Substrate Conditions and Traverse Speed on Cold Sprayed Coatings, ITSC 2004: International Thermal Spray Conference 2004: Advances in Technology and Application, pp 358-362 (2004)Google Scholar
  34. 34.
    P. Richer, B. Jodoin, K. Taylor, E. Sansoucy, M. Johnson, L. Ajdelsztajn, Effect of Particle Geometry and Substrate Preparation in Cold Spray, Therm. Spray 2005: Explore Surf. Potential, 2-4 (2005)Google Scholar
  35. 35.
    H.-R. Wang, B.-R. Hou, J. Wang, Q. Wang, and W.-Y. Li, Effect of Process Conditions on Microstructure and Corrosion Resistance of Cold-Sprayed Ti Coatings, J. Therm. Spray Technol., 2008, 17(5-6), p 736-741CrossRefGoogle Scholar
  36. 36.
    W.-Y. Li, C. Zhang, X. Guo, C.-J. Li, H. Liao, and C. Coddet, Study on Impact Fusion at Particle Interfaces and Its Effect on Coating Microstructure in Cold Spraying, Appl. Surf. Sci., 2007, 254(2), p 517-526CrossRefGoogle Scholar
  37. 37.
    T.S. Price, P.H. Shipway, and D.G. McCartney, Effect of Cold Spray Deposition of a Titanium Coating on Fatigue Behavior of a Titanium Alloy, J. Therm. Spray Technol., 2006, 15(4), p 507-512CrossRefGoogle Scholar
  38. 38.
    W. Wong, A. Rezaeian, E. Irissou, J.G. Legoux, and S. Yue, Cold spray characteristics of commercially pure Ti and Ti-6Al-4V, Advanced Materials Research, T. Chandra, N. Wanderka, W. Reimers, and M. Ionescu, Ed., Trans Tech Publ, Zurich, 2010, p 639-644Google Scholar
  39. 39.
    A.W.-Y. Tan, W. Sun, Y.P. Phang, M. Dai, I. Marinescu, Z. Dong, and E. Liu, Effects of Traverse Scanning Speed of Spray Nozzle on the Microstructure and Mechanical Properties of Cold-Sprayed Ti6Al4V Coatings, J. Therm. Spray Technol., 2017, 26(7), p 1484-1497CrossRefGoogle Scholar
  40. 40.
    A.M. Birt, V.K. Champagne, R.D. Sisson, and D. Apelian, Microstructural Analysis of Cold-Sprayed Ti-6Al-4V at the Micro- and Nano-Scale, J. Therm. Spray Technol., 2015, 24(7), p 1277-1288CrossRefGoogle Scholar
  41. 41.
    ASTM International, ASTM C633-13, Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings, ASTM International, West Conshohocken, 2013Google Scholar
  42. 42.
    ASTM International, ASTM E8/E8 M-13, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2013Google Scholar
  43. 43.
    W. Sun, A. Bhowmik, A.W.Y. Tan, F. Xue, I. Marinescu, F. Li, and E. Liu, Strategy of Incorporating Ni-Based Braze Alloy in Cold Sprayed Inconel 718 Coating, Surf. Coat. Technol., 2019, 358, p 1006-1012CrossRefGoogle Scholar
  44. 44.
    W.-Y. Li and W. Gao, Some Aspects on 3D Numerical Modeling of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis, Appl. Surf. Sci., 2009, 255(18), p 7878-7892CrossRefGoogle Scholar
  45. 45.
  46. 46.
    X. Song, J. Everaerts, W. Zhai, H. Zheng, A.W.Y. Tan, W. Sun, F. Li, I. Marinescu, E. Liu, and A.M. Korsunsky, Residual Stresses in single Particle Splat of Metal Cold Spray Process—Numerical Simulation and Direct Measurement, Mater. Lett., 2018, 230, p 152-156CrossRefGoogle Scholar
  47. 47.
    S. Kumar, G. Bae, and C. Lee, Influence of Substrate Roughness on Bonding Mechanism in Cold Spray, Surf. Coat. Technol., 2016, 304, p 592-605CrossRefGoogle Scholar
  48. 48.
    R. Kromer, S. Costil, C. Verdy, S. Gojon, and H. Liao, Laser Surface Texturing to Enhance Adhesion Bond Strength of Spray Coatings—Cold Spraying, Wire-Arc Spraying, and atmospheric Plasma Spraying, Surf. Coat. Technol, 2017, 352, p 642-653CrossRefGoogle Scholar
  49. 49.
    R.S. Yatnalkar, Experimental Investigation of Plastic Deformation of Ti-6Al-4V Under Various Loading Conditions, The Ohio State University, Columbus, 2010Google Scholar
  50. 50.
    R. Singh, K.H. Rauwald, E. Wessel, G. Mauer, S. Schruefer, A. Barth, S. Wilson, and R. Vassen, Effects of Substrate Roughness and Spray-Angle on Deposition Behavior of Cold-Sprayed Inconel 718, Surf. Coat. Technol., 2017, 319, p 249-259CrossRefGoogle Scholar
  51. 51.
    M. Niinomi, Mechanical Properties of Biomedical Titanium Alloys, Mater. Sci. Eng., A, 1998, 243(1), p 231-236CrossRefGoogle Scholar
  52. 52.
    J.Y. Lek, A. Bhowmik, A.W.-Y. Tan, W. Sun, X. Song, W. Zhai, P.J. Buenconsejo, F. Li, E. Liu, Y.M. Lam, and C.B. Boothroyd, Understanding the Microstructural Evolution of Cold Sprayed Ti-6Al-4V Coatings on Ti-6Al-4V Substrates, Appl. Surf. Sci., 2018, 459, p 492-504CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Adrian Wei-Yee Tan
    • 1
    • 2
    Email author
  • Wen Sun
    • 1
    • 2
  • Ayan Bhowmik
    • 1
    • 2
  • Jun Yan Lek
    • 3
  • Xu Song
    • 4
  • Wei Zhai
    • 5
  • Han Zheng
    • 2
    • 5
  • Feng Li
    • 1
    • 6
  • Iulian Marinescu
    • 1
    • 6
  • Zhili Dong
    • 7
  • Erjia Liu
    • 1
    • 2
    Email author
  1. 1.Rolls-Royce@NTU Corporate LabNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Facility for Analysis, Characterisation, Testing and Simulation (FACTS)Nanyang Technological UniversitySingaporeSingapore
  4. 4.School of Mechanical and Automation EngineeringChinese University of Hong KongShatinHong Kong
  5. 5.Singapore Institute of Manufacturing Technology (SIMTech)SingaporeSingapore
  6. 6.Central Technology GroupRolls-Royce Singapore Pte LtdSingaporeSingapore
  7. 7.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations