Surface Modification of a Cold Gas Dynamic Spray-Deposited Titanium Coating on Aluminum Alloy by using Friction-Stir Processing

  • F. KhodabakhshiEmail author
  • B. Marzbanrad
  • L. H. Shah
  • H. Jahed
  • A. P. Gerlich
Peer Reviewed


In this research, the parameters of the cold spray process were initially assessed for deposition of a pure titanium coating layer with the thickness in the range of 800-850 µm on an AA5083 alloy substrate. Thereafter, to enhance the structural integrity of Ti-coating layer and decrease the coating porosity, friction-stir processing was employed as a post-modification technique by using a flat cylindrical tungsten carbide tool. The plunge depth of the friction-stir tool (in the range of 0.3-0.5 mm) was found to significantly affect the densification of the porous titanium coating layer. Optical microscopy, field emission-scanning electron microscopy, electron backscattering diffraction, transmission electron microscopy analysis and indentation Vickers micro-hardness testing were conducted on the thickness cross-sections of cold-sprayed coatings to characterize the microstructural features and mechanical properties before and after friction-stir modification performed using two different plunge depths. Furthermore, residual stress profiles on the surface were determined by using x-ray diffraction analysis technique. Significant grain refinement, from an initial cold-sprayed coating grain size of less than 25 µm to grain sizes < 1 µm, was observed across the thickness section of modified samples with a gradient profile from the coating surface toward the interface depending on the plunge depth. After friction-stir processing, the hardness of a thin layer close to the surface of coating increased up to seven times higher as compared to the cold-sprayed material.


AA5083 alloy substrate cold spray friction-stir processing hardness microstructure Ti-coating 


Supplementary material

11666_2019_902_MOESM1_ESM.docx (5.1 mb)
Supplementary material 1 (DOCX 5171 kb)


  1. 1.
    A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Cold Spray Coating: Review of Material Systems and Future Perspectives, Surf. Eng., 2014, 30(6), p 369-395. CrossRefGoogle Scholar
  2. 2.
    H. Assadi, H. Kreye, F. Gärtner, and T. Klassen, Cold Spraying: A Materials Perspective, Acta Mater., 2016, 116(Supplement C), p 382-407. CrossRefGoogle Scholar
  3. 3.
    T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5), p 794. CrossRefGoogle Scholar
  4. 4.
    C. Borchers, F. Gärtner, T. Stoltenhoff, H. Assadi, and H. Kreye, Microstructural and Macroscopic Properties of Cold Sprayed Copper Coatings, J. Appl. Phys., 2003, 93(12), p 10064-10070. CrossRefGoogle Scholar
  5. 5.
    B. Marzbanrad, H. Jahed, and E. Toyserkani, On the Evolution of Substrate’s Residual Stress During Cold Spray Process: A Parametric Study, Mater. Des., 2018, 138, p 90-102. CrossRefGoogle Scholar
  6. 6.
    P.D. Eason, S.C. Kennett, T.J. Eden, I. Krull, B. Kowalski, and J.L. Jones, In Situ Observation Of Microstrain Relief in Cold-Sprayed Bulk Copper During Thermal Annealing, Scr. Mater., 2012, 67(9), p 791-794. CrossRefGoogle Scholar
  7. 7.
    S. Kumar, A. Jyothirmayi, N. Wasekar, and S.V. Joshi, Influence of Annealing on Mechanical and Electrochemical Properties of Cold Sprayed Niobium Coatings, Surf. Coat. Technol., 2016, 296, p 124-135. CrossRefGoogle Scholar
  8. 8.
    R.S. Mishra, Z.Y. Ma, and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng. A, 2003, 341(1-2), p 307-310. CrossRefGoogle Scholar
  9. 9.
    R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50(1-2), p 1-78. CrossRefGoogle Scholar
  10. 10.
    R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding: Process, Weldment Structure and Properties, Prog. Mater Sci., 2008, 53(6), p 980-1023. CrossRefGoogle Scholar
  11. 11.
    T.R. McNelley, S. Swaminathan, and J.Q. Su, Recrystallization Mechanisms During Friction Stir Welding/Processing of Aluminum Alloys, Scr. Mater., 2008, 58(5), p 349-354. CrossRefGoogle Scholar
  12. 12.
    F. Khodabakhshi, A. Simchi, A.H. Kokabi, A.P. Gerlich, and M. Nosko, Effects of Stored Strain Energy on Restoration Mechanisms and Texture Components in an Aluminum-Magnesium Alloy Prepared by Friction Stir Processing, Mater. Sci. Eng. A, 2015, 642, p 204-214. CrossRefGoogle Scholar
  13. 13.
    K.J. Hodder, H. Izadi, A.G. McDonald, and A.P. Gerlich, Fabrication of Aluminum-Alumina Metal Matrix Composites via Cold Gas Dynamic Spraying at Low Pressure Followed by Friction Stir Processing, Mater. Sci. Eng. A, 2012, 556, p 114-121. CrossRefGoogle Scholar
  14. 14.
    H. Ashrafizadeh, A. Lopera-Valle, A. McDonald, and A. Gerlich, Effect of Friction-Stir Processing on the Wear Rate of WC-Based MMC Coatings Deposited by Low-Pressure Cold Gas Dynamic Spraying. Proceedings of the International Thermal Spray Conference, 2015, p 41-47.Google Scholar
  15. 15.
    C. Huang, W. Li, Z. Zhang, M. Fu, M.P. Planche, H. Liao, and G. Montavon, Modification of a Cold Sprayed SiCp/Al5056 Composite Coating by Friction Stir Processing, Surf. Coat. Technol., 2016, 296(Supplement C), p 69-75. CrossRefGoogle Scholar
  16. 16.
    C. Huang, W. Li, Z. Zhang, M.P. Planche, H. Liao, and G. Montavon, Effect of Tool Rotation Speed on Microstructure and Microhardness of Friction-Stir-Processed Cold-Sprayed SiCp/Al5056 Composite Coating, J. Therm. Spray Technol., 2016, 25(7), p 1357-1364. CrossRefGoogle Scholar
  17. 17.
    T. Peat, A. Galloway, A. Toumpis, P. McNutt, and N. Iqbal, The Erosion Performance of Cold Spray Deposited Metal Matrix Composite Coatings with Subsequent Friction Stir Processing, Appl. Surf. Sci., 2017, 396, p 1635-1648. CrossRefGoogle Scholar
  18. 18.
    T. Peat, A. Galloway, A. Toumpis, R. Steel, W. Zhu, and N. Iqbal, Enhanced Erosion Performance of Cold Spray Co-deposited AISI316 MMCs Modified by Friction Stir Processing, Mater. Des., 2017, 120, p 22-35. CrossRefGoogle Scholar
  19. 19.
    C. Huang, W. Li, Y. Feng, Y. Xie, M.P. Planche, H. Liao, and G. Montavon, Microstructural Evolution and Mechanical Properties Enhancement of a Cold-Sprayed CuZn Alloy Coating with Friction Stir Processing, Mater. Charact., 2017, 125, p 76-82. CrossRefGoogle Scholar
  20. 20.
    F. Khodabakhshi, B. Marzbanrad, L.H. Shah, H. Jahed, and A.P. Gerlich, Friction-Stir Processing of a Cold Sprayed AA7075 Coating Layer on the AZ31B Substrate: Structural Homogeneity, Microstructures and Hardness, Surf. Coat. Technol., 2017, 331(Supplement C), p 116-128. CrossRefGoogle Scholar
  21. 21.
    F. Khodabakhshi, B. Marzbanrad, H. Jahed, and A.P. Gerlich, Interfacial Bonding Mechanisms Between Aluminum and Titanium During Cold Gas Spraying Followed by Friction-Stir Modification, Appl. Surf. Sci., 2018, 462, p 739-752. CrossRefGoogle Scholar
  22. 22.
    ASTM E384-17: Standard Test Method for Microindentation Hardness of Materials.Google Scholar
  23. 23.
    M. Faizan-Ur-Rab, S.H. Zahiri, S.H. Masood, T.D. Phan, M. Jahedi, and R. Nagarajah, Application of a Holistic 3D Model to Estimate State of Cold Spray Titanium Particles, Mater. Des., 2016, 89, p 1227-1241. CrossRefGoogle Scholar
  24. 24.
    F. Khodabakhshi, A. Simchi, A.H. Kokabi, P. Švec, F. Simančík, and A.P. Gerlich, Effects of Nanometric Inclusions on the Microstructural Characteristics and Strengthening of a Friction-Stir Processed Aluminum-Magnesium Alloy, Mater. Sci. Eng. A, 2015, 642, p 215-229. CrossRefGoogle Scholar
  25. 25.
    A. Shamsipur, S.F. Kashani-Bozorg, and A. Zarei-Hanzaki, Production of In Situ Hard Ti/TiN Composite Surface Layers on CP-Ti Using Reactive Friction Stir Processing Under Nitrogen Environment, Surf. Coat. Technol., 2013, 218, p 62-70. CrossRefGoogle Scholar
  26. 26.
    P.D. Edwards and M. Ramulu, Investigation of Microstructure, Surface and Subsurface Characteristics in Titanium Alloy Friction Stir Welds of Varied Thicknesses, Sci. Technol. Weld. Join., 2009, 14(5), p 476-483. CrossRefGoogle Scholar
  27. 27.
    A. Shamsipur, S.F. Kashani-Bozorg, and A. Zarei-Hanzaki, The Effects of Friction-Stir Process Parameters on the Fabrication of Ti/SiC Nano-composite Surface Layer, Surf. Coat. Technol., 2011, 206(6), p 1372-1381. CrossRefGoogle Scholar
  28. 28.
    S.B. Dayani, S.K. Shaha, R. Ghelichi, J.F. Wang, and H. Jahed, The Impact of AA7075 Cold Spray Coating on the Fatigue Life of AZ31B Cast Alloy, Surf. Coat. Technol., 2018, 337, p 150-158. CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • F. Khodabakhshi
    • 1
    Email author
  • B. Marzbanrad
    • 2
  • L. H. Shah
    • 3
  • H. Jahed
    • 2
  • A. P. Gerlich
    • 2
  1. 1.School of Metallurgical and Materials Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada
  3. 3.Faculty of Mechanical and Manufacturing EngineeringUniversiti Malaysia PahangPekanMalaysia

Personalised recommendations