Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 5, pp 963–973 | Cite as

All-Solid-State Supercapacitor Based on MoS2–Graphite Composite Prepared by the Vacuum Kinetic Spray Method

  • Mohaned Mohammed Mahmoud Mohammed
  • Doo-Man ChunEmail author
Peer Reviewed
  • 57 Downloads

Abstract

The combination of the molybdenum disulfide (MoS2) and graphite can result in very promising hybrid electrode material for use in energy storage devices owing to the interesting properties of the combined material, such as an extremely high surface area, and prominent electrical conductivity. In this study, MoS2 powder and graphite powder are mixed with different compositions via the ball milling. A nanoparticle deposition system is used to deposit MoS2–graphite composites on stainless-steel. The morphology and structure of the thin films are evaluated by field-emission scanning electron microscope, x-ray diffraction, and Raman spectroscopy. The electrochemical performances of supercapacitors fabricated from MoS2–graphite thin films as an electrode material using a two-electrode cell were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The supercapacitor shows better performance at 15% of the MoS2–graphite composition ratio. Moreover, the cyclic stability of the supercapacitor is measured by repeating charging–discharging for 10,000 cycles.

Keywords

all-solid-state supercapacitor electrode materials energy storage MoS2–graphite composite nanoparticle deposition system (NPDS) 

Notes

Acknowledgment

This work was supported by the 2018 Research Fund of University of Ulsan.

References

  1. 1.
    J.R. Miller and P. Simon, Materials Science. Electrochemical Capacitors for Energy Management, Science, 2008, 321, p 651-652CrossRefGoogle Scholar
  2. 2.
    P. Simon and Y. Gogotsi, Materials for Electrochemical Capacitors, Nat. Mater., 2008, 7, p 845-854CrossRefGoogle Scholar
  3. 3.
    J.R. Miller, Market and Applications of Electrochemical Capacitors, Supercapacit. Mater. Syst. Appl., 2013, 45, p 509-526CrossRefGoogle Scholar
  4. 4.
    F. Béguin, V. Presser, A. Balducci, and E. Frackowiak, Carbons and Electrolytes for Advanced Supercapacitors, Adv. Mater., 2014, 26, p 2219-2251CrossRefGoogle Scholar
  5. 5.
    Y. Liang, F. Liang, H. Zhong, Z. Li, R. Fu, and D. Wu, An advanced Carbonaceous Porous Network for High-Performance Organic Electrolyte Supercapacitors, J. Mater. Chem. A, 2013, 1, p 7000CrossRefGoogle Scholar
  6. 6.
    M. Inagaki, H. Konno, and O. Tanaike, Carbon Materials for Electrochemical Capacitors, J. Power Sources, 2010, 195, p 7880-7903CrossRefGoogle Scholar
  7. 7.
    Z. Li, D. Wu, X. Huang, J. Ma, H. Liu, Y. Liang, R. Fu, and K. Matyjaszewski, Fabrication of Novel Polymeric and Carbonaceous Nanoscale Networks by the Union of Self-Assembly and Hypercrosslinking, Energy Environ. Sci., 2014, 7, p 3006-3012CrossRefGoogle Scholar
  8. 8.
    K. Fic, M. Meller, and E. Frackowiak, Strategies for Enhancing the Performance of Carbon/Carbon Supercapacitors in Aqueous Electrolytes, Electrochim. Acta, 2014, 128, p 210-217CrossRefGoogle Scholar
  9. 9.
    M.F. El-Kady, V. Strong, S. Dubin, and R.B. Kaner, Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors, Science, 2012, 335, p 1326-1330CrossRefGoogle Scholar
  10. 10.
    Y. Zhao, W. Wang, D.-B. Xiong, G. Shao, W. Xia, S. Yu, and F. Gao, Titanium Carbide Derived Nanoporous Carbon for Supercapacitor Applications, Int. J. Hydrog. Energy, 2012, 37, p 19395-19400CrossRefGoogle Scholar
  11. 11.
    C.-W. Liew, S. Ramesh, and A.K. Arof, Good Prospect of Ionic Liquid Based-Poly(Vinyl Alcohol) Polymer Electrolytes for Supercapacitors with Excellent Electrical, Electrochemical and Thermal Properties, Int. J. Hydrog. Energy, 2014, 39, p 2953-2963CrossRefGoogle Scholar
  12. 12.
    C.-W. Liew, S. Ramesh, and A.K. Arof, Characterization of Ionic Liquid Added Poly(Vinyl Alcohol)-Based Proton Conducting Polymer Electrolytes and Electrochemical Studies on the Supercapacitors, Int. J. Hydrog. Energy, 2015, 40, p 852-862CrossRefGoogle Scholar
  13. 13.
    I. Shakir, High Energy Density Based Flexible Electrochemical Supercapacitors from Layer-by-Layer Assembled Multiwall Carbon Nanotubes and Graphene, Electrochim. Acta, 2014, 129, p 396-400CrossRefGoogle Scholar
  14. 14.
    G.A. Snook, P. Kao, and A.S. Best, Conducting-Polymer-Based Supercapacitor Devices and Electrodes, J. Power Sources, 2011, 196, p 1-12CrossRefGoogle Scholar
  15. 15.
    H. Wang, H. Feng, and J. Li, Graphene and Graphene-like Layered Transition Metal Dichalcogenides in Energy Conversion and Storage, Small, 2014, 10, p 2165-2181CrossRefGoogle Scholar
  16. 16.
    L.-Q. Fan, G.-J. Liu, J.-H. Wu, L. Liu, J.-M. Lin, and Y.-L. Wei, Asymmetric Supercapacitor Based on Graphene Oxide/Polypyrrole Composite and Activated Carbon Electrodes, Electrochim. Acta, 2014, 137, p 26-33CrossRefGoogle Scholar
  17. 17.
    K.-J. Huang, L. Wang, Y.-J. Liu, Y.-M. Liu, H.-B. Wang, T. Gan, and L.-L. Wang, Layered MoS2–Graphene Composites for Supercapacitor Applications with Enhanced Capacitive Performance, Int. J. Hydrog. Energy, 2013, 38, p 14027-14034CrossRefGoogle Scholar
  18. 18.
    A.V. Powell, L. Kosidowski, and A. McDowall, Inorganic–Organic Hybrids by Exfoliation of MoS2, J. Mater. Chem., 2001, 11, p 1086-1091CrossRefGoogle Scholar
  19. 19.
    H.S.S. Ramakrishna Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, and C.N.R. Rao, MoS2 and WS2 Analogues of Graphene, Angew. Chemie Int. Ed., 2010, 49, p 4059-4062CrossRefGoogle Scholar
  20. 20.
    J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, and J.P. Lemmon, Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries, Chem. Mater., 2010, 22, p 4522-4524CrossRefGoogle Scholar
  21. 21.
    N. Zheng, X. Bu, and P. Feng, Synthetic Design of Crystalline Inorganic Chalcogenides Exhibiting Fast-Ion Conductivity, Nature, 2003, 426, p 428CrossRefGoogle Scholar
  22. 22.
    E.G. da Silveira Firmiano, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, W.H. Schreiner, and E.R. Leite, Supercapacitor Electrodes Obtained by Directly Bonding 2D MoS2 on Reduced Graphene Oxide, Adv. Energy Mater., 2014, 4, p 1301380CrossRefGoogle Scholar
  23. 23.
    A. Ramadoss, T. Kim, G.-S. Kim, and S.J. Kim, Enhanced Activity of a Hydrothermally Synthesized Mesoporous MoS2 Nanostructure for High Performance Supercapacitor Applications, New J. Chem., 2014, 38, p 2379-2385CrossRefGoogle Scholar
  24. 24.
    B. Hu, X. Qin, A.M. Asiri, K.A. Alamry, A.O. Al-Youbi, and X. Sun, Synthesis of Porous Tubular C/MoS2 Nanocomposites and Their Application as a Novel Electrode Material for Supercapacitors with Excellent Cycling Stability, Electrochim. Acta, 2013, 100, p 24-28CrossRefGoogle Scholar
  25. 25.
    K.-J. Huang, L. Wang, J.-Z. Zhang, L.-L. Wang, and Y.-P. Mo, One-Step Preparation of Layered Molybdenum Disulfide/Multi-walled Carbon Nanotube Composites for Enhanced Performance Supercapacitor, Energy, 2014, 67, p 234-240CrossRefGoogle Scholar
  26. 26.
    J. Wang, Z. Wu, K. Hu, X. Chen, and H. Yin, High Conductivity Graphene-like MoS2/Polyaniline Nanocomposites and Its Application in Supercapacitor, J. Alloys Compd., 2015, 619, p 38-43CrossRefGoogle Scholar
  27. 27.
    W. Song, K. Jung, D.-M. Chun, S.-H. Ahn, and C.S. Lee, Deposition of Al2O3 Powders Using Nano-particle Deposition System, Surf. Rev. Lett., 2010, 17, p 189-193CrossRefGoogle Scholar
  28. 28.
    D.-M. Chun, M.-H. Kim, J.-C. Lee, and S.-H. Ahn, A Nano-particle Deposition System for Ceramic and Metal Coating at Room Temperature and Low Vacuum Conditions TT, Int. J. Precis. Eng. Manuf., 2008, 9, p 51-53Google Scholar
  29. 29.
    K. Jung, W. Song, D.-M. Chun, Y.-H. Kim, J.-C. Yeo, M.-S. Kim, S.-H. Ahn, and C.S. Lee, Nickel Line Patterning Using Silicon Supersonic Micronozzle Integrated with a Nanoparticle Deposition System, Jpn. J. Appl. Phys., 2010, 49, p 05EC09Google Scholar
  30. 30.
    M.N.E.A. Al Nasim and D.-M. Chun, Formation of Few-Layer Graphene Flake Structures from Graphite Particles During Thin Film Coating Using Dry Spray Deposition Method, Thin Solid Films, 2017, 622, p 34-40CrossRefGoogle Scholar
  31. 31.
    M.N.E.A. Al-Nasim and D.-M. Chun, Substrate-Dependent Deposition Behavior of Graphite Particles Dry-Sprayed at Room Temperature Using a Nano-particle Deposition System, Surf. Coat. Technol., 2017, 309, p 172-178CrossRefGoogle Scholar
  32. 32.
    M. Mohammed and D.-M. Chun, Electrochemical Performance of Few-Layer Graphene Nano-Flake Supercapacitors Prepared by the Vacuum Kinetic Spray Method, Coatings, 2018, 8, p 302CrossRefGoogle Scholar
  33. 33.
    Y. Liu, Z. Dang, Y. Wang, J. Huang, and H. Li, Hydroxyapatite/Graphene-Nanosheet Composite Coatings Deposited by Vacuum Cold Spraying for Biomedical Applications: Inherited Nanostructures and Enhanced Properties, Carbon, 2014, 67, p 250-259CrossRefGoogle Scholar
  34. 34.
    Y. Liu, X. Xu, X. Suo, Y. Gong, and H. Li, Suspension Flame Spray Construction of Polyimide-Copper Layers for Marine Antifouling Applications, J. Therm. Spray Technol., 2018, 27, p 98-105CrossRefGoogle Scholar
  35. 35.
    V.H. Pham, K.-H. Kim, D.-W. Jung, K. Singh, E.-S. Oh, and J.S. Chung, Liquid Phase Co-exfoliated MoS2–Graphene Composites as Anode Materials for Lithium Ion Batteries, J. Power Sources, 2013, 244, p 280-286CrossRefGoogle Scholar
  36. 36.
    M.A. Ibrahem, T. Lan, J.K. Huang, Y.-Y. Chen, K.-H. Wei, L.-J. Li, and C.W. Chu, High Quantity and Quality Few-Layers Transition Metal Disulfide Nanosheets from Wet-Milling Exfoliation, RSC Adv., 2013, 3, p 13193-13202CrossRefGoogle Scholar
  37. 37.
    A.C. Ferrari, Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects, Solid State Commun., 2007, 143, p 47-57CrossRefGoogle Scholar
  38. 38.
    H. Wang, Y. Wang, X. Cao, M. Feng, and G. Lan, Vibrational Properties of Graphene and Graphene Layers, J. Raman Spectrosc., 2009, 40, p 1791-1796CrossRefGoogle Scholar
  39. 39.
    M. Hiramatsu, K. Shiji, H. Amano, and M. Hori, Fabrication of Vertically Aligned Carbon Nanowalls Using Capacitively Coupled Plasma-Enhanced Chemical Vapor Deposition Assisted by Hydrogen Radical Injection, Appl. Phys. Lett., 2004, 84, p 4708-4710CrossRefGoogle Scholar
  40. 40.
    M. Hiramatsu and M. Hori, Fabrication of Carbon Nanowalls Using Novel Plasma Processing, Jpn. J. Appl. Phys., 2006, 45, p 5522CrossRefGoogle Scholar
  41. 41.
    T. Mori, M. Hiramatsu, K. Yamakawa, K. Takeda, and M. Hori, Fabrication of Carbon Nanowalls Using Electron Beam Excited Plasma-Enhanced Chemical Vapor Deposition, Diam. Relat. Mater., 2008, 17, p 1513-1517CrossRefGoogle Scholar
  42. 42.
    J. Zhu, H. Wang, J. Liu, L. Ouyang, and M. Zhu, Exfoliation of MoS2 and h-BN Nanosheets by Hydrolysis of LiBH4, Nanotechnology, 2017, 28, p 115604CrossRefGoogle Scholar
  43. 43.
    J.M. Soon and K.P. Loh, Electrochemical Double-Layer Capacitance of MoS2 Nanowall Films, Electrochem. Solid-State Lett., 2007, 10, p A250-A254CrossRefGoogle Scholar
  44. 44.
    M. Acerce, D. Voiry, and M. Chhowalla, Metallic 1T Phase MoS2 Nanosheets as Supercapacitor Electrode Materials, EBSCOhost Nat. Nanotechnol., 2015, 10, p 313CrossRefGoogle Scholar
  45. 45.
    H. Pan, C.K. Poh, Y.P. Feng, and J. Lin, Supercapacitor Electrodes from Tubes-in-Tube Carbon Nanostructures, Chem. Mater., 2007, 19, p 6120-6125CrossRefGoogle Scholar
  46. 46.
    B. Xie, Y. Chen, M. Yu, S. Zhang, L. Lu, Z. Shu, and Y. Zhang, Phosphoric Acid-Assisted Synthesis of Layered MoS2/Graphene Hybrids with Electrolyte-Dependent Supercapacitive Behaviors, RSC Adv., 2016, 6, p 89397-89406CrossRefGoogle Scholar
  47. 47.
    M.A. Bissett, I.A. Kinloch, and R.A.W. Dryfe, Characterization of MoS2–Graphene Composites for High-Performance Coin Cell Supercapacitors, ACS Appl. Mater. Interfaces, 2015, 7, p 17388-17398CrossRefGoogle Scholar
  48. 48.
    Y. Xiao, L. Huang, Q. Zhang, S. Xu, Q. Chen, and W. Shi, Gravure Printing of Hybrid MoS2@S-rGO Interdigitated Electrodes for Flexible Microsupercapacitors, Appl. Phys. Lett., 2015, 107, p 13906CrossRefGoogle Scholar
  49. 49.
    A. Winchester, S. Ghosh, S. Feng, A.L. Elias, T. Mallouk, M. Terrones, and S. Talapatra, Electrochemical Characterization of Liquid Phase Exfoliated Two-Dimensional Layers of Molybdenum Disulfide, ACS Appl. Mater. Interfaces, 2014, 6, p 2125-2130CrossRefGoogle Scholar
  50. 50.
    Q. Chen, X. Li, X. Zang, Y. Cao, Y. He, P. Li, K. Wang, J. Wei, D. Wu, and H. Zhu, Effect of Different Gel Electrolytes on Graphene-Based Solid-State Supercapacitors, RSC Adv., 2014, 4, p 36253-36256CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringUniversity of UlsanUlsanRepublic of Korea

Personalised recommendations