Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 5, pp 1000–1016 | Cite as

The Combined Effect of Creep and TGO Growth on the Cracking Driving Force in a Plasma-Sprayed Thermal Barrier System

  • Zhi-Yuan Wei
  • Hong-Neng CaiEmail author
  • Rui-Xue Feng
  • He Zhang
Peer Reviewed
  • 84 Downloads

Abstract

A comprehensive understanding of the failure mechanisms of plasma-sprayed thermal barrier coatings (TBCs) under temperature cycling is a prerequisite for developing the next advanced gas turbine with prolonged thermal cyclic lifetime. In this study, a finite element model including the dynamic growth of thermally grown oxide (TGO) is proposed to explore the combined effect of creep and TGO growth on the cracking driving force in TBCs. A different group of material configurations is designed to satisfy the objective. An adapted interface element based on the virtual crack closure technique is proposed to obtain the strain energy release rate, namely cracking driving force, and crack growth is assessed using a mixed-mode criterion. The results reveal that the cracking predicted by the simulation is in line with the experiment results. Two possible mechanisms of crack coalescence are proposed. The increase in TGO lateral growth strain will induce premature coating spallation. The bond coat and TGO creep only have a slight impact on the ceramic cracking if a comparatively low TGO growth stress is included. Hence, coating optimization suggested in this study may provide additional options for the development of TBCs with extended thermal cyclic lifetime.

Keywords

cracking driving force creep behavior thermal barrier coatings system (TBCs) thermally grown oxide (TGO) growth virtual crack closure technique (VCCT) 

Notes

Acknowledgments

The present project is financially supported by the National Science Foundation of China (No. 51671159), the National Basic Research Program of China (No. 2012CB625100), the Fundamental Research Funds for the Central Universities and the National Program for Support of Top-notch Young Professionals.

References

  1. 1.
    V. Kumar and K. Balasubramanian, Progress Update on Failure Mechanisms of Advanced Thermal Barrier Coatings: A Review, Prog. Org. Coat., 2016, 90, p 54-82CrossRefGoogle Scholar
  2. 2.
    K.P. Jonnalagadda, R. Eriksson, X.H. Li, and R.L. Peng, Thermal Barrier Coatings: Life Model Development and Validation, Surf. Coat. Technol., 2019, 362, p 293-301CrossRefGoogle Scholar
  3. 3.
    K. Knipe, A. Manero Ii, S.F. Siddiqui, C. Meid, J. Wischek, J. Okasinski, J. Almer, A.M. Karlsson, M. Bartsch, and S. Raghavan, Strain Response of Thermal Barrier Coatings Captured under Extreme Engine Environments through Synchrotron X-ray Diffraction, Nat. Commun., 2014, 5, p 4559CrossRefGoogle Scholar
  4. 4.
    Z.Y. Wei, H.N. Cai, and C.J. Li, Comprehensive Dynamic Failure Mechanism of Thermal Barrier Coatings Based on a Novel Crack Propagation and TGO Growth Coupling Model, Ceram. Int., 2018, 44(18), p 22556-22566CrossRefGoogle Scholar
  5. 5.
    Q.M. Yu, H.L. Zhou, and L.B. Wang, Influences of Interface Morphology and Thermally Grown Oxide Thickness on Residual Stress Distribution in Thermal Barrier Coating System, Ceram. Int., 2016, 42(7), p 8338-8350CrossRefGoogle Scholar
  6. 6.
    W. Zhu, M. Cai, L. Yang, J.W. Guo, Y.C. Zhou, and C. Lu, The Effect of Morphology of Thermally Grown Oxide on the Stress Field in a Turbine Blade with Thermal Barrier Coatings, Surf. Coat. Technol., 2015, 276, p 160-167CrossRefGoogle Scholar
  7. 7.
    C. Che, G.Q. Wu, H.Y. Qi, Z. Huang, and X.G. Yang, Uneven Growth of Thermally Grown Oxide and Stress Distribution in Plasma-Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2009, 203(20-21), p 3088-3091CrossRefGoogle Scholar
  8. 8.
    M. Karabaş, E. Bal, and Y. Taptık, Thermal Cycling Behavior of La2Zr2O7 Thermal Barrier Coatings by Plasma Spraying of an Amorphous and Crystalline Precursors, Mater. Res. Express, 2018, 6(1), p 015514CrossRefGoogle Scholar
  9. 9.
    C.J. Li, Y. Li, G.J. Yang, and C.X. Li, Evolution of Lamellar Interface Cracks During Isothermal Cyclic Test of Plasma-Sprayed 8YSZ Coating with a Columnar-Structured YSZ Interlayer, J. Therm. Spray Technol., 2013, 22(8), p 1374-1382CrossRefGoogle Scholar
  10. 10.
    V. Kumar and B. Kandasubramanian, Processing and Design Methodologies for Advanced and Novel Thermal Barrier Coatings for Engineering Applications, Particuology, 2016, 27, p 1-28CrossRefGoogle Scholar
  11. 11.
    C.J. Li, Y. Li, G.J. Yang, and C.X. Li, A Novel Plasma-Sprayed Durable Thermal Barrier Coating with a Well-Bonded YSZ Interlayer Between Porous YSZ and Bond Coat, J. Therm. Spray Technol., 2012, 21(3-4), p 383-390CrossRefGoogle Scholar
  12. 12.
    Y.Z. Xing, C.J. Li, C.X. Li, and G.J. Yang, Influence of Through-Lamella Grain Growth on Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia as an Electrolyte in Solid Oxide Fuel Cells, J. Power Sources, 2008, 176(1), p 31-38CrossRefGoogle Scholar
  13. 13.
    G.R. Li, B.W. Lv, G.J. Yang, W.X. Zhang, C.X. Li, and C.J. Li, Relationship Between Lamellar Structure and Elastic Modulus of Thermally Sprayed Thermal Barrier Coatings with Intra-splat Cracks, J. Therm. Spray Technol., 2015, 24(8), p 1355-1367CrossRefGoogle Scholar
  14. 14.
    W.W. Zhang, G.R. Li, Q. Zhang, G.J. Yang, G.W. Zhang, and H.M. Mu, Self-Enhancing Thermal Insulation Performance of Bimodal-Structured Thermal Barrier Coating, J. Therm. Spray Technol., 2018, 27(7), p 1064-1075CrossRefGoogle Scholar
  15. 15.
    C.J. Li and A. Ohmori, Relationships between the Microstructure and Properties of Thermally Sprayed Deposits, J. Therm. Spray Technol., 2003, 12(1), p 6CrossRefGoogle Scholar
  16. 16.
    Z. Lu, S.W. Myoung, H.S. Kim, M.S. Kim, J.H. Lee, Y.G. Jung, J.C. Jang, and U. Paik, Microstructure Evolution and Interface Stability of Thermal Barrier Coatings with Vertical Type Cracks in Cyclic Thermal Exposure, J. Therm. Spray Technol., 2013, 22(5), p 671-679CrossRefGoogle Scholar
  17. 17.
    G.R. Li, L.S. Wang, and G.J. Yang, A Novel Composite-Layered Coating Enabling Self-Enhancing Thermal Barrier Performance, Scr. Mater., 2019, 163, p 142-147CrossRefGoogle Scholar
  18. 18.
    H. Dong, G.J. Yang, C.X. Li, X.T. Luo, C.J. Li, and K. Faber, Effect of TGO Thickness on Thermal Cyclic Lifetime and Failure Mode of Plasma-Sprayed TBCs, J. Am. Ceram. Soc., 2014, 97(4), p 1226-1232CrossRefGoogle Scholar
  19. 19.
    H. Dong, G.J. Yang, H.N. Cai, C.X. Li, and C.J. Li, Propagation Feature of Cracks in Plasma-Sprayed YSZ Coatings under Gradient Thermal Cycling, Ceram. Int., 2015, 41(3), p 3481-3489CrossRefGoogle Scholar
  20. 20.
    C.J. Li, H. Dong, H. Ding, G.J. Yang, and C.X. Li, The Correlation of the TBC Lifetimes in Burner Cycling Test with Thermal Gradient and Furnace Isothermal Cycling Test by TGO Effects, J. Therm. Spray Technol., 2017, 26(3), p 378-387CrossRefGoogle Scholar
  21. 21.
    Q. Zhang, Study on Oxidation Behavior of Cold-Sprayed MCrALY Superalloy Bond Coating for Thermal Barrier Coatings, Xi’an jiaotong University, Xi’an, 2009, p 36-37Google Scholar
  22. 22.
    M. Elhoriny, M. Wenzelburger, A. Killinger, and R. Gadow, Finite Element Simulation of Residual Stress Development in Thermally Sprayed Coatings, J. Therm. Spray Technol., 2017, 26(4), p 735-744CrossRefGoogle Scholar
  23. 23.
    M. Bäker and P. Seiler, A Guide to Finite Element Simulations of Thermal Barrier Coatings, J. Therm. Spray Technol., 2017, 26(6), p 1146-1160CrossRefGoogle Scholar
  24. 24.
    M. Ranjbar-far, J. Absi, G. Mariaux, and D.S. Smith, Crack Propagation Modeling on the Interfaces of Thermal Barrier Coating System with Different Thickness of the Oxide Layer and Different Interface Morphologies, Mater. Des., 2011, 32(10), p 4961-4969CrossRefGoogle Scholar
  25. 25.
    M. Ranjbar-Far, J. Absi, and G. Mariaux, Finite Element Modeling of the Different Failure Mechanisms of a Plasma Sprayed Thermal Barrier Coatings System, J. Therm. Spray Technol., 2012, 21(6), p 1234-1244CrossRefGoogle Scholar
  26. 26.
    B. Lv, H. Xie, R. Xu, X. Fan, W. Zhang, and T.J. Wang, Effects of Sintering and Mixed Oxide Growth on the Interface Cracking of Air-Plasma-Sprayed Thermal Barrier Coating System At High Temperature, Appl. Surf. Sci., 2016, 360, p 461-469CrossRefGoogle Scholar
  27. 27.
    R. Xu, X.L. Fan, W.X. Zhang, and T.J. Wang, Interfacial Fracture Mechanism Associated with Mixed Oxides Growth in Thermal Barrier Coating System, Surf. Coat. Technol., 2014, 253, p 139-147CrossRefGoogle Scholar
  28. 28.
    S.T. Kyaw, I.A. Jones, and T.H. Hyde, Simulation of Failure of Air Plasma Sprayed Thermal Barrier Coating Due to Interfacial and Bulk Cracks Using Surface-Based Cohesive Interaction and Extended Finite Element Method, J. Strain Anal. Eng., 2016, 51(2), p 132-143CrossRefGoogle Scholar
  29. 29.
    X.L. Fan, W.X. Zhang, T.J. Wang, and Q. Sun, The Effect of Thermally Grown Oxide on Multiple Surface Cracking in Air Plasma Sprayed Thermal Barrier Coating System, Surf. Coat. Technol., 2012, 208, p 7-13CrossRefGoogle Scholar
  30. 30.
    W.X. Zhang, X.L. Fan, and T.J. Wang, The Surface Cracking Behavior in Air Plasma Sprayed Thermal Barrier Coating System Incorporating Interface Roughness Effect, Appl. Surf. Sci., 2011, 258(2), p 811-817CrossRefGoogle Scholar
  31. 31.
    X. Fan, W. Jiang, J. Li, T. Suo, T.J. Wang, and R. Xu, Numerical Study on Interfacial Delamination of Thermal Barrier Coatings with Multiple Separations, Surf. Coat. Technol., 2014, 244, p 117-122CrossRefGoogle Scholar
  32. 32.
    X. Fan, R. Xu, and T.J. Wang, Interfacial Delamination of Double-Ceramic-Layer Thermal Barrier Coating System, Ceram. Int., 2014, 40(9), p 13793-13802CrossRefGoogle Scholar
  33. 33.
    W. Zhu, Z.B. Zhang, L. Yang, Y.C. Zhou, and Y.G. Wei, Spallation of Thermal Barrier Coatings with Real Thermally Grown Oxide Morphology Under Thermal Stress, Mater. Des., 2018, 146, p 180-193CrossRefGoogle Scholar
  34. 34.
    L. Cen, W.Y. Qin, and Q.M. Yu, Analysis of Interface Delamination in Thermal Barrier Coating System with Axisymmetric Structure Based on Corresponding Normal and Tangential Stresses, Surf. Coat. Technol., 2019, 358, p 785-795CrossRefGoogle Scholar
  35. 35.
    T.S. Hille, T.J. Nijdam, A.S.J. Suiker, S. Turteltaub, and W.G. Sloof, Damage Growth Triggered by Interface Irregularities in Thermal Barrier Coatings, Acta Mater., 2009, 57(9), p 2624-2630CrossRefGoogle Scholar
  36. 36.
    R. Soulignac, V. Maurel, L. Rémy, and A. Köster, Cohesive Zone Modelling of Thermal Barrier Coatings Interfacial Properties Based on Three-Dimensional Observations and Mechanical Testing, Surf. Coat. Technol., 2013, 237, p 95-104CrossRefGoogle Scholar
  37. 37.
    W. Zhu, L. Yang, J.W. Guo, Y.C. Zhou, and C. Lu, Determination of Interfacial Adhesion Energies of Thermal Barrier Coatings by Compression Test Combined with a Cohesive Zone Finite Element Model, Int. J. Plast, 2015, 64, p 76-87CrossRefGoogle Scholar
  38. 38.
    X.L. Fan, R. Xu, W.X. Zhang, and T.J. Wang, Effect of Periodic Surface Cracks on the Interfacial Fracture of Thermal Barrier Coating System, Appl. Surf. Sci., 2012, 258(24), p 9816-9823CrossRefGoogle Scholar
  39. 39.
    Q.M. Yu and Q. He, Effect of Material Properties on Residual Stress Distribution in Thermal Barrier Coatings, Ceram. Int., 2018, 44(3), p 3371-3380CrossRefGoogle Scholar
  40. 40.
    K. Slámečka, P. Skalka, J. Pokluda, and L. Čelko, Finite Element Simulation of Stresses in a Plasma-Sprayed Thermal Barrier Coating with an Irregular Top-coat/Bond-coat Interface, Surf. Coat. Technol., 2016, 304, p 574-583CrossRefGoogle Scholar
  41. 41.
    P. Skalka, K. Slámečka, J. Pokluda, and L. Čelko, Finite Element Simulation of Stresses in a Plasma-Sprayed Thermal Barrier Coating with a Crack at the TGO/Bond-Coat Interface, Surf. Coat. Technol., 2018, 337, p 321-334CrossRefGoogle Scholar
  42. 42.
    Y. Chai, C. Lin, and Y. Li, Effects of Creep-Plastic Behavior on Stress Development in TBCs During Cooling, Ceram. Int., 2017, 43(15), p 11627-11634CrossRefGoogle Scholar
  43. 43.
    J. Rösler, M. Bäker, and K. Aufzug, A Parametric Study of the Stress State of Thermal Barrier Coatings Part I: Creep relaxation, Acta Mater., 2004, 52(16), p 4809-4817Google Scholar
  44. 44.
    M. Bäker, Influence of Material Models on the Stress State in Thermal Barrier Coating Simulations, Surf. Coat. Technol., 2014, 240, p 301-310CrossRefGoogle Scholar
  45. 45.
    B. Li, X. Fan, K. Zhou, and T.J. Wang, Effect of Oxide Growth on the Stress Development in Double-Ceramic-Layer Thermal Barrier Coatings, Ceram. Int., 2017, 43(17), p 14763-14774CrossRefGoogle Scholar
  46. 46.
    Q. Shen, L. Yang, Y.C. Zhou, Y.G. Wei, and W. Zhu, Effects of Growth Stress in Finite-Deformation Thermally Grown Oxide on Failure Mechanism of Thermal Barrier Coatings, Mech. Mater., 2017, 114, p 228-242CrossRefGoogle Scholar
  47. 47.
    L. Wang, Y.X. Zhao, X.H. Zhong, S.Y. Tao, W. Zhang, and Y. Wang, Influence of “Island-Like” Oxides in the Bond-Coat on the Stress and Failure Patterns of the Thermal-Barrier Coatings Fabricated by Atmospheric Plasma Spraying During Long-Term High Temperature Oxidation, J. Therm. Spray Technol., 2013, 23(3), p 431-446CrossRefGoogle Scholar
  48. 48.
    E.P. Busso, Z.Q. Qian, M.P. Taylor, and H.E. Evans, The Influence of Bondcoat and Topcoat Mechanical Properties on Stress Development in Thermal Barrier Coating Systems, Acta Mater., 2009, 57(8), p 2349-2361CrossRefGoogle Scholar
  49. 49.
    G.R. Li and L.S. Wang, Durable TBCs with Self-Enhanced Thermal Insulation Based on Co-design on Macro- and Microstructure, Appl. Surf. Sci., 2019, 483, p 472-480CrossRefGoogle Scholar
  50. 50.
    G.R. Li and G.J. Yang, Understanding of Degradation-Resistant Behavior of Nanostructured Thermal Barrier Coatings with Bimodal Structure, J. Mater. Sci. Technol., 2019, 35(3), p 231-238CrossRefGoogle Scholar
  51. 51.
    H. Meng, J. Huang, and S. Chen, The Influence of Interface Morphology on the Stress Distribution in Double-Ceramic-Layer Thermal Barrier Coatings, Ceram. Int., 2015, 41(3), p 4312-4325CrossRefGoogle Scholar
  52. 52.
    P. Skalka, K. Slámečka, J. Pokluda, and L. Čelko, Stability of Plasma-Sprayed Thermal Barrier Coatings: The Role of the Waviness of the Bond Coat and the Thickness of the Thermally Grown Oxide Layer, Surf. Coat. Technol., 2015, 274, p 26-36CrossRefGoogle Scholar
  53. 53.
    C. Lin, Q. Sun, Y. Chai, H. Chen, and Y. Li, Stress Evolution in Top Coat of Thermal Barrier Coatings by Considering Strength Difference Property in Tension and Compression, Surf. Coat. Technol., 2017, 329, p 86-96CrossRefGoogle Scholar
  54. 54.
    J. Jiang, Z. Zou, W. Wang, X. Zhao, Y. Liu, and Z. Cao, Effect of Internal Oxidation on the Interfacial Morphology and Residual Stress in Air Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2018, 334, p 215-226CrossRefGoogle Scholar
  55. 55.
    M. Białas, Finite Element Analysis of Stress Distribution in Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 202(24), p 6002-6010CrossRefGoogle Scholar
  56. 56.
    M. Ranjbar-Far, J. Absi, G. Mariaux, and F. Dubois, Simulation of the Effect of Material Properties and Interface Roughness on the Stress Distribution in Thermal Barrier Coatings Using Finite Element Method, Mater. Des., 2010, 31(2), p 772-781CrossRefGoogle Scholar
  57. 57.
    M.Y. He, J.W. Hutchinson, and A.G. Evans, Simulation of Stresses and Delamination in a Plasma-Dprayed Thermal Barrier System upon Thermal Cycling, Mater. Sci. Eng., A, 2003, 345(1), p 172-178CrossRefGoogle Scholar
  58. 58.
    K. Al-Athel, K. Loeffel, H. Liu, and L. Anand, Modeling Decohesion of a Top-Coat From a Thermally-Growing Oxide in a Thermal Barrier Coating, Surf. Coat. Technol., 2013, 222, p 68-78CrossRefGoogle Scholar
  59. 59.
    ABAQUS, Version 6.14 Documentation, Dassault Systemes Simulia Corp. Providence, RI, USA, 2014Google Scholar
  60. 60.
    J. Aktaa, K. Sfar, and D. Munz, Assessment of TBC Systems Failure Mechanisms Using a Fracture Mechanics Approach, Acta Mater., 2005, 53(16), p 4399-4413CrossRefGoogle Scholar
  61. 61.
    A.M. Karlsson, C.G. Levi, and A.G. Evans, A Model Study of Displacement Instabilities During Cyclic Oxidation, Acta Mater., 2002, 50(6), p 1263-1273CrossRefGoogle Scholar
  62. 62.
    K. Sfar, J. Aktaa, and D. Munz, Numerical Investigation of Residual Stress Fields and Crack Behavior in TBC Systems, Mater. Sci. Eng., A, 2002, 333(1-2), p 351-360CrossRefGoogle Scholar
  63. 63.
    H. Dong, Thermal Cyclic Lifetime and Crack Propagation Behavior of Plasma-Sprayed Thermal Barrier Coatings, Xi’an jiaotong University, Xi’an, 2013, p 47-48Google Scholar
  64. 64.
    E.F. Rybicki and M.F. Kanninen, A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral, Eng. Fract. Mech., 1977, 9(4), p 931-938CrossRefGoogle Scholar
  65. 65.
    D. Xie and S.B. Biggers, Calculation of Transient Strain Energy Release Rates under Impact Loading Based on the Virtual Crack Closure Technique, Int. J. Impact Eng, 2007, 34(6), p 1047-1060CrossRefGoogle Scholar
  66. 66.
    D. Xie and S.B. Biggers, Progressive Crack Growth Analysis Using Interface Element Based on the Virtual Crack Closure Technique, Finite Elem. Anal. Des., 2006, 42(11), p 977-984CrossRefGoogle Scholar
  67. 67.
    P.F. Zhao, C.A. Sun, X.Y. Zhu, F.L. Shang, and C.J. Li, Fracture Toughness Measurements of Plasma-Sprayed Thermal Barrier Coatings Using a Modified Four-point Bending Method, Surf. Coat. Technol., 2010, 204(24), p 4066-4074CrossRefGoogle Scholar
  68. 68.
    A. Rabiei and G.A. Evans, Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings, Acta Mater., 2000, 48(15), p 3963-3976CrossRefGoogle Scholar
  69. 69.
    K.W. Schlichting, N.P. Padture, E.H. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng., A, 2003, 342(1), p 120-130CrossRefGoogle Scholar
  70. 70.
    D. Renusch, H. Echsler, and M. Schütze, Progress in Life Time Modeling of APS-TBC Part I: Residual, Thermal and Growth Stresses Including the Role of Thermal Fatigue, Mater. High Temp., 2004, 21(2), p 65-76CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Zhi-Yuan Wei
    • 1
  • Hong-Neng Cai
    • 1
    Email author
  • Rui-Xue Feng
    • 1
  • He Zhang
    • 1
  1. 1.State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations