Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 5, pp 917–929 | Cite as

Effect of Strain Rate on the Microstructure Evolution and Compressive Deformation Behavior of High-Strength Cu Bulk Material Manufactured by Cold Spray Process

  • Min-Seok Baek
  • Young-Kyun Kim
  • Kee-Ahn LeeEmail author
Peer Reviewed
  • 53 Downloads

Abstract

This study investigated the effect of strain rate (10−3-10/s) on the compressive properties of pure Cu bulk material at room temperature manufactured by cold spray process. Initial microstructural observation confirmed the sizes of ultra-fine grains to be in hundreds of nm, with dynamic recrystallization on deposited particle interfaces, and the average grain size was found to be 3.14 μm. The compression test at room temperature showed yield strength of 314-368 MPa at initial strain rate of 10−3-10/s, at a level similar to that of materials produced with the severe plastic deformation process. Meanwhile, during compressive deformation at all strain rates, work hardening occurred first, and a unique deformation behavior of work softening occurred thereafter after a certain strain. Moreover, as strain rates increased, the rates of work hardening and work softening increased simultaneously. The microstructural observation after the compressive deformation confirmed microstructure evolution in all materials, and as the strain rate increased, the average grain size decreased, and a more uniform structure was formed. Based on the above findings, this study discusses the deformation behavior in correlation with the microstructures of the cold-sprayed Cu materials at different strain rates.

Keywords

cold spray compression deformation behavior microstructure pure Cu strain rate 

Notes

Acknowledgments

This work was supported Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0002007, The Competency Development Program for Industry Specialist).

References

  1. 1.
    T.H.V. Steenkiste, Kinetic Spray: A New Coating process, Key Eng. Mater., 2001, 197, p 59-86CrossRefGoogle Scholar
  2. 2.
    A. Papyrin, Cold Spray Technology, Adv. Mater. Proc., 2001, 9, p 49-51Google Scholar
  3. 3.
    H.J. Kim, C.H. Lee, and Y.G. Kweon, Cold Gas Dynamic Spraying Process, J. Weld. Join., 2002, 20, p 53-60Google Scholar
  4. 4.
    C.H. Lee, Kinetic Spraying Process, J. Korean Weld. Join. Soc., 2005, 23, p 7-10Google Scholar
  5. 5.
    G. Bae, Y. Xiong, S. Kumar, K. Kang, and C.H. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56, p 4858-4868CrossRefGoogle Scholar
  6. 6.
    G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.J. Kim, and C. Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57, p 5654-5666CrossRefGoogle Scholar
  7. 7.
    C. Cinca and J.M. Guilemany, Cold Gas Sprayed Stellite-6 Coatings and Their Wear Resistance, J. Mater. Sci. Eng., 2013, 2, p 1-6Google Scholar
  8. 8.
    J.C. Lee, H.J. Kang, W.S. Chu, and S.H. Ahn, Repair of Damaged Mold Surface by Cold-Spray Method, Anna. CIRP, 2007, 56, p 577-580CrossRefGoogle Scholar
  9. 9.
    J. Pattison, S. Celotto, R. Morgan, M. Baray, and W. O’Neill, Cold Gas Dynamic Manufacturing: A Non-thermal Approach to Freeform Fabrication, Int. J. Mach. Tool Manuf., 2007, 47, p 627-634CrossRefGoogle Scholar
  10. 10.
    K.S. Kim, J.S. Yu, J.Y. Won, C.H. Lee, S.J. Kim, and K.A. Lee, Manufacturing and Compressive Deformation Behavior of High-Strength Aluminum Coating Material Fabricated by Kinetic Spray Process, Metall. Mater. Trans. A, 2013, 44, p 4876-4879CrossRefGoogle Scholar
  11. 11.
    Y.K. Kim, K.S. Kim, H.J. Kim, C.H. Park, and K.A. Lee, Microstructure and Room Temperature Compressive Deformation Behavior of Cold-Sprayed High-Strength Cu Bulk Material, J. Therm. Spray Technol., 2017, 26, p 1498-1508CrossRefGoogle Scholar
  12. 12.
    J. Wu, Y. Tao, H. Jin, M. Li, T. Xiong, and C. Sun, Friction and Wear Properties of Cold Gas Dynamic Sprayed α-Al2O3-Al Composite Coatings, J. Coat., 2013, 2013, p 1-7CrossRefGoogle Scholar
  13. 13.
    S.M.H. Gangaraj, A. Moridi, and M. Guangliano, Critical Review of Corrosion Protection by Cold Spray Coatings, Surf. Eng., 2015, 31, p 803-815CrossRefGoogle Scholar
  14. 14.
    N. Kang, P. Coddet, H. Liao, and C. Coddet, Cold Gas Dynamic Spraying of A Novel Micro-alloyed Copper: Microstructure, Mechanical properties, J. Alloys Compd., 2016, 686, p 399-406CrossRefGoogle Scholar
  15. 15.
    L. Kaden, G. Matthäus, T. Ullsperger, and H. Engelhardt, Selective Laser Melting of Copper Using Ultrashort Laser Ulses, Appl. Phys. A, 2017, 596, p 2-6Google Scholar
  16. 16.
    P.A. Lykov, E.V. Safonv, and A.M. Akhemedianov, Selective Laser Melting of Copper, Mater. Sci. For., 2016, 843, p 284-288Google Scholar
  17. 17.
    Z. Mao, D.Z. Zhang, P. Wei, and K. Zhang, Manufacturing Feasibility and Forming Properties of Cu-4Sn in Selective Laser Melting, Materials, 2017, 10, p 333CrossRefGoogle Scholar
  18. 18.
    A. Sova, S. Grigoriev, A. Okunkova, and I. Smurov, Potential of Cold Gas Dynamic Spray as Additive Manufacturing Technology, Int. J. Adv. Manuf. Technol., 2013, 69, p 229-2278CrossRefGoogle Scholar
  19. 19.
    Y.K. Kim, S.H. Park, J.H. Yu, B. Almangour, and K.A. Lee, Improvement in the High-Temperature Creep Properties Via Heat Treatment of Ti-6Al-4V Alloy Manufactured by Selective Laser Melting, Mater. Sci. Eng. A, 2018, 715, p 33-40CrossRefGoogle Scholar
  20. 20.
    S. Cadney, M. Brochu, P. Richer, and B. Jodoin, Cold Gas Dynamic Spraying as a Method for Freeforming and Joining Materials, Surf. Coat. Thechnol., 2008, 202, p 2801-2806CrossRefGoogle Scholar
  21. 21.
    Y. Cormier, P. Duspuis, and B. Jodoin, Pyramidal Fin Arrays Performance Using Streamwise Anisotropic Materials by Cold Spray Additive Manufacturing, J. Therm. Spray Technol., 2016, 25, p 170-182CrossRefGoogle Scholar
  22. 22.
    W. Li, C. Huang, M. Yu, and H. Liao, Investigation on Mechanical Property of Annealed Copper Particles and Cold Sprayed Copper Coating by a Micro-indentation Testing, Mater. Des., 2013, 46, p 219-226CrossRefGoogle Scholar
  23. 23.
    J.H. Cho, Y.M. Jin, D.Y. Park, H.J. Kim, I.H. Oh, and K.A. Lee, Manufacturing and Properties of Cold Spray Deposited Large Thickness Cu Coating Material for Sputtering target, Met. Mater. Int., 2011, 17, p 157-166CrossRefGoogle Scholar
  24. 24.
    K.J. Hodder, H. Izadi, A.G. McDonald, and A.P. Gerlich, Fabrication of Aluminum-Alumina Metal Matrix Composites Via Cold Gas Dynamic Spraying at Low Pressure Followed by Friction Stir Processing, Mater. Sci. Eng. A, 2012, 556, p 114-121CrossRefGoogle Scholar
  25. 25.
    A. Sova, D. Pervushin, and I. Smurov, Development of Multimaterial Coatings by Cold Spray and Gas Detonation Spraying, Surf. Coat. Technol., 2010, 205, p 1108-1114CrossRefGoogle Scholar
  26. 26.
    D. Seo, K. Ogawa, K. Sakaguchi, N. Miyamoto, and Y. Tsuzuki, Parameter Study Influencing Thermal Conductivity of Annealed Pure Copper Coatings Deposited by Selective Cold Spray Processes, Surf. Coat. Technol., 2012, 206, p 2316-2324CrossRefGoogle Scholar
  27. 27.
    P.D. Eason, J.A. Fewkes, S.C. Kennett, T.J. Eden, K. Tello, M.J. Kaufman, and M. Tiryakiglu, On the Characterization of Bulk Copper Produced by Cold Gas Dynamic Spray Processing in as Fabricated and Annealed Conditions, Mater. Sci. Eng. A, 2011, 528, p 8174-8178CrossRefGoogle Scholar
  28. 28.
    Y.M. Jin, J.H. Cho, D.Y. Park, J.H. Kim, and K.A. Lee, Manufacturing and Macroscopic Properties of Cold Sprayed Cu-In Coating Material for Sputtering Target, J. Therm. Spray Technol., 2011, 20, p 497-507CrossRefGoogle Scholar
  29. 29.
    H. Singh, T.S. Sidhu, S.B.S. Kalsi, and J. Karthikeyan, Evolution of the Microstructure by High Velocity Impacts of Particles by Cold Spray, Mater. Manuf. Process., 2016, 31, p 1514-1520CrossRefGoogle Scholar
  30. 30.
    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Krete, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394CrossRefGoogle Scholar
  31. 31.
    C. Borchers, F. Gärtner, T. Stoltenhoff, and H. Krete, Microstructural Bonding Features of Cold Sprayed Face Centered Cubic Metals, J. Appl. Phys., 2004, 96, p 4288-4292CrossRefGoogle Scholar
  32. 32.
    K. Yang, W. Li, X. Gua, X. Yang, and Y. Xu, Characterizations and Anisotropy of Cold-Spraying Additive-Manufactured Copper Bulk, J. Mater. Sci. Technol., 2018, 34, p 1570-1579CrossRefGoogle Scholar
  33. 33.
    J.T. Benzing, W.A. Poling, D.T. Pierce, J. Bentley, K.O. Findley, D. Raabe, and J.E. Witting, Effects of Strain Rate on Mechanical Properties and Deformation Behavior of an Austenitic Fe-25Mn-3Al-Si WIP-TRIP Steel, Mater. Sci. Eng. A, 2018, 711, p 78-92CrossRefGoogle Scholar
  34. 34.
    M. Dao, L. Lu, Y.F. Shen, and S. Suresh, Strength, Strain-Rate Sensitivity and Ductility of Copper with Nanoscale Twin, Acta Mater., 2006, 54, p 5421-5432CrossRefGoogle Scholar
  35. 35.
    Z. Fu, Z. Zhang, L. Meng, B. Shu, Y. Zhu, and X. Zhu, Effect of Strain Rate on Mechanical Properties of Cu/Ni Multilayered Composites Processed by Electrodeposition, Mater. Sci. Eng. A, 2018, 726, p 154-159CrossRefGoogle Scholar
  36. 36.
    D. Peirce, R.J. Asarao, and A. Needleman, Material Rate Dependence and Localized Doformation in Crystalline Solids, Acta Metall., 1983, 31, p 1951-1976CrossRefGoogle Scholar
  37. 37.
    M. Dao and R.J. Asaro, Localized Deformation Modes and Non-Schmid Effects in Crystalline Solids. Part II. Deformation Patterns, Mech. Mater., 1996, 23, p 103-132CrossRefGoogle Scholar
  38. 38.
    B.C. Choi, D.Y. Park, and K.A. Lee, Effect of Powder Alloy Composition on the Microstructure and Properties of Kinetic Sprayed Cu-Ga Based Coating Materials, Met. Mater. Int., 2016, 22, p 649CrossRefGoogle Scholar
  39. 39.
    F. Gärtner, T. Stoltenhoff, J. Voyer, H. Kreye, S. Riekehr, and M. Kocak, Mechanical Properties of Cold Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200, p 6770CrossRefGoogle Scholar
  40. 40.
    T. Sakai, H. Miura, A. Goloborodko, and O. Stdikov, Continuous Dynamic Recrystallization During the Transient Severe Deformation of Aluminum Allot 7475, Acta Mater., 2009, 57, p 153-162CrossRefGoogle Scholar
  41. 41.
    K. Edalati, T. Fujioka, and Z. Horita, Microstructure and Mechanical Properties of Pure Cu Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2008, 497, p 168-173CrossRefGoogle Scholar
  42. 42.
    Y.J. Li, X.H. Zhang, and W. Blum, Transition from Strengthening to Softening by Grain Boundaries in Ultrafine-Grained Cu, Acta Mater., 2004, 52, p 5009-5018CrossRefGoogle Scholar
  43. 43.
    H. Koivuluoto, M. Honkanen, and P. Vuoristo, Cold Sprayed Copper and Tantalum Coating-Detailed FESEM and TEM Analysis, Surf. Coat. Technol., 2010, 204, p 2353-2361CrossRefGoogle Scholar
  44. 44.
    K.H. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Grain Refinement in a Single Titanium Powder Particle Impacted at High Velocity, Scripta Mater., 2008, 59, p 768-771CrossRefGoogle Scholar
  45. 45.
    J. Wu, H. Fang, S. Yoon, H. Kim, and C. Lee, Measurement of Particle Velocity and Characterization of Deposition in Aluminum Alloy Kinetic Spraying Process, Appl. Surf. Sci., 2005, 252, p 1368-1377CrossRefGoogle Scholar
  46. 46.
    F. Sciammarella, M. Gonser, and M. Styrcula, Laser Additive Manufacturing of Pure Copper, Rapid Conference and Exposition Announces Sessions and Workshops On Additive Manufacturing (AM) Technologies, June 10-13 (David L. Lawrence Convention Center in Pittsburgh, Penn), Formnext, Fabtech, 2013Google Scholar
  47. 47.
    F. Yazdani, M.N. Bassim, and A.G. Odeshi, The Formation of Adiabatic Shear Bands in Copper During Torsion at High Strain Rates, Procedia Eng., 2009, 1, p 225-228CrossRefGoogle Scholar
  48. 48.
    S. Malekjani, P.D. Hodgson, P. Cizek, and T.B. Hilditch, Strain Rate Effect on the Cyclic Deformation Response of UFG Al Alloys, Mater. Sci. Eng. A, 2012, 548, p 69-74CrossRefGoogle Scholar
  49. 49.
    X. Ji, S. Emura, X. Min, and K. Tsuchiya, Strain-Rate Effect on Work-Hardening Behavior in β-Type Ti-10Mo-1Fe Alloy with TWIP Effect, Mater. Sci. Eng. A, 2017, 707, p 701-707CrossRefGoogle Scholar
  50. 50.
    T. Ungar, J. Gubicza, P. Hanak, and I. Alexandrov, Densities and Character of Dislocations and Size Distribution of Sub-grains in Deformed Metals by X-Ray Diffraction Profile Analysis, Mater. Sci. Eng. A, 2001, 319-321, p 274-278CrossRefGoogle Scholar
  51. 51.
    R.A. Renzetti, H.R.Z. Sandim, R.E. Bolmaro, P.A. Suzuki, and A. Moslang, X-ray Evolution of Dislocation Density in ODS-Eurofer Steel, Mater. Sci. Eng. A, 2012, 534, p 142-146CrossRefGoogle Scholar
  52. 52.
    M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, 1994CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringInha UniversityIncheonKorea

Personalised recommendations