Journal of Thermal Spray Technology

, Volume 28, Issue 5, pp 883–892 | Cite as

The Effect of Electromechanical Treatment on Structure and Properties of Plasma-Sprayed Fe-30Cr Coating

  • A. Yu. IvannikovEmail author
  • V. I. Kalita
  • D. I. Komlev
  • A. A. Radyuk
  • A. V. Alpatov
  • I. N. Zakharov
  • S. N. Grigoriev
  • M. V. Prozhega
Peer Reviewed


This study investigates structure and properties of the plasma-sprayed coating from Fe-30Cr steel that was then finished using electromechanical treatment (EMT). As a consequence of the coating thus formed, surface microhardness under a 200 gf load increased from 3.4 ± 0.4 to 5.2 ± 0.4 GPa and number of pores in the coating structure reduced from 8.0 ± 1.5 to 2.0 ± 0.5%. The results of the microstructural studies showed fundamental changes of the plasma-sprayed coating treated by the EMT with the formation of nanostructured crystalline phases. The obtained results revealed the high potential of the EMT for post-treatment of plasma-sprayed coatings.


coating electromechanical treatment Fe-Cr microhardness post-treatment 



Authors are grateful to Yulia Ivannikova for technical support in preparing the manuscript, Konstantin Vorkachev for scanning electron microscopy investigation (State Target No. 075-00746-19-00), and Tatiana Sviridova for x-ray investigation (RFBR 18-08-00842).


  1. 1.
    L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, Chichester, 2008, p 115-159CrossRefGoogle Scholar
  2. 2.
    L. Zheng, W. Xiong, and X. Yan, Microstructure and Mechanical Properties of Coated Cermets Modified by Hot Isostatically Pressing, Surf. Coat. Technol., 2007, 201, p 5198-5202CrossRefGoogle Scholar
  3. 3.
    S. Dyshlovenko, L. Pawlowski, I. Smurov, and V. Veiko, Pulsed Laser Modification of Plasma-Sprayed Coatings: Experimental Processing of Hydroxyapatite and Numerical Simulation, Surf. Coat. Technol., 2006, 201, p 2248-2255CrossRefGoogle Scholar
  4. 4.
    F. Ghadami, M. Heydarzadeh Sohi, and S. Ghadami, Effect of Bond Coat and Post-Heat Treatment on the Adhesion of Air Plasma Sprayed WC-Co Coatings, Surf. Coat. Technol., 2015, 261, p 289-294CrossRefGoogle Scholar
  5. 5.
    T. Chraska, Z. Pala, R. Mušálek, J. Medřický, and M. Vilémová, Post-Treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering, J. Therm. Spray Technol., 2015, 24, p 637-643CrossRefGoogle Scholar
  6. 6.
    H. Li, K.A. Khor, L.G. Yu, and P. Cheang, Microstructure Modifications and Phase Transformation in Plasma-Sprayed WC–Co Coatings Following Post-Spray Spark Plasma Sintering, Surf. Coat. Technol., 2005, 194, p 96-102CrossRefGoogle Scholar
  7. 7.
    V.I. Kalita, V.P. Bagmutov, I.N. Zakharov, D.I. Komlev, and AYu Ivannikov, Hardening of Plasma Coatings by Electromechanical Treatment, Phys. Chem. Mater. Process., 2008, 1, p 38-42 (in Russian)Google Scholar
  8. 8.
    Y.L. Wang, S.G. Zhu, W.S. Gu, and X.B. Qi, Electric Contact Strengthening to Improve the Bonding Between Thermally Sprayed 316 Stainless Steel Coating and 45# Steel Substrate, Exp. Tech., 2011, 35, p 66-70CrossRefGoogle Scholar
  9. 9.
    M. Xu, S.G. Zhu, and H. Ding, Electrical Contact Strengthening of Induction-Clad Ni-40% WC Composite Coatings on 40Cr Substrates, Surf. Coat. Technol., 2015, 279, p 32-38CrossRefGoogle Scholar
  10. 10.
    V.P. Bagmutov, V.I. Kalita, I.N. Zakharov, AYu Ivannikov, and E.B. Zakharova, Structure and Microhardness of Plasma Coatings Hardened by Nanoparticles After Electrochemical Treatment, Steel Transl., 2009, 39, p 870-877CrossRefGoogle Scholar
  11. 11.
    V.P. Bagmutov, V.I. Kalita, E.B. Zakharova, D.I. Komlev, AYu Ivannikov, I.N. Zakharov, and A.V. Kosogorov, Ultradisperse and Nanostructures in Plasma Coatings Hardened by Electromechanical Treatment, Steel Transl., 2013, 43, p 351-355CrossRefGoogle Scholar
  12. 12.
    AYu Ivannikov, V.I. Kalita, D.I. Komlev, A.A. Radyuk, V.P. Bagmutov, I.N. Zakharov, and S.N. Parshev, The Effect of Electromechanical Treatment on Structure and Properties of Plasma Sprayed Fe-6W-5Mo-4Cr-2V-C Coating, Surf. Coat. Technol., 2018, 335, p 327-333CrossRefGoogle Scholar
  13. 13.
    V.P. Bagmutov, I.N. Zakharov, AYu Ivannikov, and E.V. Poplavsky, Computer Simulation of Thermal Processes by Electromechanical Hardening of Plasma Coatings, Vestn. Voronezh. Gos. Tekhn. Univ., 2007, 3, p 135-140 (in Russian)Google Scholar
  14. 14.
    V.P. Bagmutov, D.S. Denisevich, I.N. Zakharov, and AYu Ivannikov, Nonlinear and Coupled Thermal Effects During Finite Element Simulation of Contact Thermoforce Surface Hardening, PNRPU Mech. Bull., 2017, 1, p 233-250Google Scholar
  15. 15.
    L. Niewolak, L. Garcia-Fresnillo, G.H. Meier, and W.J. Quadakkers, Sigma-Phase Formation in High Chromium Ferritic Steels at 650°C, J. Alloys Compd., 2015, 638, p 405-418CrossRefGoogle Scholar
  16. 16.
    Tz Tzvetkoff and J. Kolchakov, Mechanism of Growth, Composition and Structure of Oxide Films Formed on Ferrous Alloys in Molten Salt Electrolytes—A Review, Mat. Chem. Phys., 2004, 87, p 201-211CrossRefGoogle Scholar
  17. 17.
    A. Mazilkin, M.M. Abramov, N.A. Enikeev, I.V. Lomakin, R.Z. Valiev, Yu Ivanisenko, C. Kübel, A. Etienne, X. Sauvage, and B. Radiguet, The Effect of Tungsten on Microstructure and Mechanical Performance of an Ultrafine Fe-Cr Steel, Mater. Lett., 2018, 227, p 292-295CrossRefGoogle Scholar
  18. 18.
    R.L. Klueh and D.R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM International, West Conshohocken, PA, 2001, p 1-228CrossRefGoogle Scholar
  19. 19.
    S. Huang, Q. Xu, and T. Yoshiie, Effects of Cr and W on Defects Evolution in Irradiated F82H Model Alloys, Mater. Lett., 2016, 178, p 272-275CrossRefGoogle Scholar
  20. 20.
    M. Dadéa, Influence of Microstructural Parameters on the Mechanical Properties of Oxide Dispersion Strengthened Fe-14Cr Steels, Acta Mater., 2017, 127, p 165-177CrossRefGoogle Scholar
  21. 21.
    A. Bhattacharya, E. Meslin, J. Henry, A. Barbu, S. Poissonnet, and B. Décamps, Effect of Chromium on Void Swelling in Ion Irradiated High Purity Fe-Cr Alloys, Acta Mater., 2016, 108, p 241-251CrossRefGoogle Scholar
  22. 22.
    V.K. Shamardin, M.M. Abramova, T.M. Bulanova, A.A. Karsakov, A.E. Fedoseev, A.V. Obukhov, R.Z. Valiev, I.V. Alexandrov, G.I. Raab, and N.A. Enikeev, Stability of the Structure and Properties of an Ultrafine-Grained Cr-Ni Steel Irradiated with Neutrons in Nuclear Reactor Core Conditions, Mater. Sci. Eng. A, 2018, 712, p 365-372CrossRefGoogle Scholar
  23. 23.
    AYu Ivannikov, V.I. Kalita, D.I. Komlev, A.A. Radyuk, V.P. Bagmutov, I.N. Zakharov, and S.N. Parshev, The Effect of Electromechanical Treatment on Structure and Properties of Plasma Sprayed Ni-20Cr Coating, J. Alloys Compd., 2016, 655, p 11-20CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • A. Yu. Ivannikov
    • 1
    • 2
    Email author
  • V. I. Kalita
    • 1
  • D. I. Komlev
    • 1
  • A. A. Radyuk
    • 1
  • A. V. Alpatov
    • 1
    • 3
  • I. N. Zakharov
    • 4
  • S. N. Grigoriev
    • 2
  • M. V. Prozhega
    • 5
  1. 1.Baikov Institute of Metallurgy and Material ScienceRussian Academy of SciencesMoscowRussian Federation
  2. 2.Moscow State University of Technology ‘Stankin’MoscowRussian Federation
  3. 3.National University of Science and Technology, MISiSMoscowRussian Federation
  4. 4.Volgograd State Technical UniversityVolgogradRussian Federation
  5. 5.Mechanical Engineering Research InstituteRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations