Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 5, pp 986–999 | Cite as

Microstructures and Properties of Sm2(Zr0.7Ce0.3)2O7/8YSZ Double-Ceramic-Layer Thermal Barrier Coatings Deposited by Atmospheric Plasma Spraying

  • Panjie Huo
  • Wenjia Song
  • Xin ZhouEmail author
  • Hao Zhang
  • Jianing Jiang
  • Shujuan Dong
  • Xueqiang Cao
  • Donald B. Dingwell
Peer Reviewed
  • 44 Downloads

Abstract

The properties of Sm2(Zr0.7Ce0.3)2O7 (SZ7C3) as a novel thermal barrier coating (TBC) candidate have been evaluated. There is no evidence for a phase transformation for SZ7C3 from room temperature to 1600 °C. SZ7C3 exhibits a higher sintering resistance than the conventional yttria-stabilized zirconia (YSZ). The Vickers hardness for the SZ7C3 bulk is ca. 9.6 GPa, and the fracture toughness lies in a range of 1.5-2.5 MPa m1/2. Single SZ7C3 coatings and SZ7C3/8YSZ double-ceramic-layer (DCL) coatings were prepared by plasma spraying. The thermal conductivities of SZ7C3 coatings range from 0.4 to 0.6 W m−1 K−1 (significantly lower than those of 8YSZ). SZ7C3 coatings also exhibit moderate thermal expansion coefficients (TECs), near 10.8 × 10−6 K−1 at 1200 °C. The values of thermal expansion coefficients and fracture toughness are higher than those of La2(Zr0.7Ce0.3)2O7 (LZ7C3), which has been proposed as a promising high-temperature (> 1250 °C) TBC candidate material. The thermal cycling lifetime of SZ7C3/8YSZ DCL coating is much longer than that of LZ7C3/8YSZ TBC as demonstrated by the furnace thermal cycling tests, further confirming that SZ7C3 coatings have great potential as high-temperature TBCs for use in the next generation of advanced engines.

Keywords

Double-ceramic-layer Sm2(Zr0.7Ce0.3)2O7 thermal barrier coating thermal cycling test thermo-physical properties 

Notes

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (No. 51702244, No. 51501137), Natural Science Foundation of Hubei Province (No. 2017CFB285) and the Fundamental Research Funds for the Central Universities (WUT: 2018IVB037). Wenjia Song acknowledges the support of the ‘Freigeist’ Fellowship of the VolkswagenStiftung for ‘Volcanic Ash Deposition in Jet Engines’ (VADJEs, No 89705).

References

  1. 1.
    S. Zhao, Z. Yu, Z. Ling, L. Gu, W. Huang, X. Fan, B. Zou, Y. Wang, and X. Cao, A Simple Non-Destructive Method to Indicate the Spallation and Damage Degree of the Double-Ceramic-Layer Thermal Barrier Coating of La2(Zr0.7Ce0.3)2O7, and 8YSZ:Eu, J. Eur. Ceram. Soc., 2013, 33, p 2207-2213CrossRefGoogle Scholar
  2. 2.
    M. Li, L. Guo, and F. Ye, Phase Structure and Thermal Conductivities of Er2O3 Stabilized ZrO2 Toughened Gd2Zr2O7 Ceramics for Thermal Barrier Coatings, Ceram. Int., 2016, 42, p 16584-16588CrossRefGoogle Scholar
  3. 3.
    X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1-10CrossRefGoogle Scholar
  4. 4.
    J. Wang, J. Sun, H. Zhang, S. Dong, J. Jiang, L. Deng, X. Zhou, and X. Cao, Effect of Spraying Power on Microstructure and Property of Nanostructured YSZ Thermal Barrier Coatings, J. Alloys Compd., 2017, 730, p 471-482CrossRefGoogle Scholar
  5. 5.
    H.S. Zhang, S.Q. Yan, and X.G. Chen, Preparation and Thermophysical Properties of Fluorite-Type Samarium-Dysprosium-Cerium Oxides, J. Eur. Ceram. Soc., 2014, 34, p 55-61CrossRefGoogle Scholar
  6. 6.
    H.X. Wu, Z. Ma, L. Liu, Y.B. Liu, and D.Y. Wang, Thermal Cycling Behavior and Bonding Strength of Single-Ceramic-Layer Sm2Zr2O7, and Double-Ceramic-Layer Sm2Zr2O7/8YSZ Thermal Barrier Coatings Deposited by Atmospheric Plasma Spraying, Ceram. Int., 2016, 42, p 12922-12927CrossRefGoogle Scholar
  7. 7.
    F. Zhou, Y. Wang, Z. Cui, L. Wang, J. Gou, Q. Zhang, and C. Wang, Thermal Cycling Behavior of Nanostructured 8YSZ, SZ/8YSZ and 8CSZ/8YSZ Thermal Barrier Coatings Fabricated by Atmospheric Plasma Spraying, Ceram. Int., 2017, 43, p 4102-4111CrossRefGoogle Scholar
  8. 8.
    L. Guo, C. Zhang, M. Li, W. Sun, Z. Zhang, and F. Ye, Hot Corrosion Evaluation of Gd2O3-Yb2O3 co-Doped Y2O3 Stabilized ZrO2 Thermal Barrier Oxides Exposed to Na2SO4 + V2O5 Molten Salt, Ceram. Int., 2016, 43, p 2780-2785CrossRefGoogle Scholar
  9. 9.
    L. Guo, H. Guo, H. Peng, and S. Gong, Thermophysical Properties of Yb2O3 Doped Gd2Zr2O7 and Thermal Cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2014, 34, p 1255-1263CrossRefGoogle Scholar
  10. 10.
    J. Yuan, J. Sun, J. Wang, H. Zhang, S. Dong, J. Jiang, L. Deng, X. Zhou, and X. Cao, SrCeO3, As a Novel Thermal Barrier Coating Candidate for High-Temperature Applications, J. Alloys Compd., 2018, 740, p 519-528CrossRefGoogle Scholar
  11. 11.
    Z. Xu, S. He, L. He, R. Mu, G. Huang, and X. Cao, Novel Thermal Barrier Coatings Based on La2(Zr0.7Ce0.3)2O7/8YSZ Double-Ceramic-Layer Systems Deposited by Electron Beam Physical Vapor Deposition, J. Alloys Compd., 2011, 509, p 4273-4283CrossRefGoogle Scholar
  12. 12.
    H. Zhou and D. Yi, Effect of Rare Earth Doping on Thermo-Physical Properties of Lanthanum Zirconate ceramic for Thermal Barrier Coatings, J. Rare Earths, 2008, 26, p 770-774CrossRefGoogle Scholar
  13. 13.
    H. Zhang, Z. Li, Q. Xu, and F.C. Wang, Preparation and Thermophysical Properties ofSm2(Ce0.3Zr0.7)2O7 Ceramic, Adv. Eng. Mater., 2010, 10, p 139-142CrossRefGoogle Scholar
  14. 14.
    M.G. Gok and G. Goller, Production and Characterisation of GZ/CYSZ Alternative Thermal Barrier Coatings with Multilayered and Functionally Graded Designs, J. Eur. Ceram. Soc., 2016, 36, p 1755-1764CrossRefGoogle Scholar
  15. 15.
    H. Zhang, L. Guo, Y. Ma, H. Peng, H. Guo, and S. Gong, Thermal Cycling Behavior of (Gd0.9Yb0.1)2Zr2O7/8YSZ Gradient Thermal barrier Coatings Deposited on Hf-Doped NiAl Bond Coat by EB-PVD, Surf. Coat. Technol., 2014, 258, p 950-955CrossRefGoogle Scholar
  16. 16.
    X. Cao, R. Vassen, W. Fischer, and F. Tietz, Lanthanum-Cerium Oxide as a Thermal Barrier-Coating Material for High-Temperature Applications, Adv. Mater., 2003, 15, p 1438-1442CrossRefGoogle Scholar
  17. 17.
    X. Chen, Y. Zhao, X. Fan, Y. Liu, B. Zou, Y. Wang, H. Ma, and X. Cao, Thermal Cycling Failure of New LaMgAl11O19/YSZ Double Ceramic Top Coat Thermal Barrier Coating Systems, Surf. Coat. Technol., 2011, 205, p 3293-3300CrossRefGoogle Scholar
  18. 18.
    J. Sun, J. Wang, X. Zhou, S. Dong, L. Deng, J. Jiang, and X. Cao, Microstructure and Thermal Cycling Behavior of Plasma-Sprayed LaMgAl11O19 Coatings, Ceram. Int., 2018, 44, p 5572-5580CrossRefGoogle Scholar
  19. 19.
    X. Wang, L. Guo, H. Zhang, S. Gong, and H. Guo, Structural Evolution and Thermal Conductivities of (Gd1−xYbx)2Zr2O7(x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) Ceramics for Thermal Barrier Coating, Ceram. Int., 2015, 41, p 12621-12625CrossRefGoogle Scholar
  20. 20.
    H. Zhao, C.G. Levi, and H.N.G. Wadley, Vapor Deposited Samarium Zirconate Thermal Barrier Coatings, Surf. Coat. Technol., 2009, 203, p 3157-3167CrossRefGoogle Scholar
  21. 21.
    X. Xie, H. Guo, and S. Gong, Lanthanum-Titanium-Aluminum Oxide: A Novel Thermal Barrier Coating Material for Applications at 1300 °C, J. Eur. Ceram. Soc., 2011, 31, p 1677-1683CrossRefGoogle Scholar
  22. 22.
    Z.Y. Shen, L.M. He, Z.H. Xu, R.D. Mu, and G.H. Huang, Rare Earth Oxides StabilizedLa2Zr2O7 TBCs: EB-PVD, Thermal Conductivity and Thermal Cycling Life, Surf. Coat. Technol., 2019, 357, p 427-432CrossRefGoogle Scholar
  23. 23.
    Z.Y. Shen, L.M. He, Z.H. Xu, R.D. Mu, and G.H. Huang, Morphological Evolution and Failure of LZC/YSZ DCL TBCs by Electron Beam-Physical Vapor Deposition, Materialia, 2018, 4, p 340-347CrossRefGoogle Scholar
  24. 24.
    Z.Y. Shen, L.M. He, Z.H. Xu, R.D. Mu, and G.H. Huang, LZC/YSZ DCL TBCs by EB-PVD: Microstructure, Low Thermal Conductivity and High Thermal Cycling Life, J. Eur. Ceram. Soc., 2019, 39, p 1443-1450CrossRefGoogle Scholar
  25. 25.
    L. Guo, C. Zhang, L. Xu, M. Li, Q. Wang, F. Ye, C. Dan, and V. Ji, Effects of TiO2 Doping on the Defect Chemistry and Thermo-Physical Properties of Yb2O3 Stabilized ZrO2, J. Eur. Ceram. Soc., 2017, 37, p 4163-4169CrossRefGoogle Scholar
  26. 26.
    J. Yu, H. Zhao, and S. Tao, Thermal Conductivity of Plasma Sprayed Sm2Zr2O7 Coatings, J. Eur. Ceram. Soc., 2010, 30, p 799-804CrossRefGoogle Scholar
  27. 27.
    H. Lehmann, D. Pitzer, G. Pracht, and R. Vassen, Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System, J. Am. Ceram. Soc., 2003, 86, p 1338-1344CrossRefGoogle Scholar
  28. 28.
    L. Guo, Y. Zhang, X. Zhao, C. Wang, and F. Ye, Thermal Expansion and Fracture Toughness of (RE0.9Sc0.1)2Zr2O7,(RE = La, Sm, Dy, Er) Ceramics, Ceram. Int., 2016, 42, p 583-588CrossRefGoogle Scholar
  29. 29.
    Z.S. Khan, B. Zou, X. Chen, C. Wang, X. Fan, L. Gu, W. Huang, and X. Cao, Novel Double Ceramic Coatings Based on Yb2Si2 O7/La2(Zr0.7Ce0.3)2O7, by Plasma Spraying on C f/SiC Composites and Their Thermal Shock Behavior, Surf. Coat. Technol., 2012, 207, p 546-554CrossRefGoogle Scholar
  30. 30.
    G.E. Youngblood, R.W. Rice, and R.P. Ingel, Thermal Diffusivity of Partially and Fully Stabilized (Yttria) Zirconia Single Crystals, J. Am. Ceram. Soc., 2010, 71, p 255-260CrossRefGoogle Scholar
  31. 31.
    Z. Xu, L. He, X. Zhong, R. Mu, S. He, and X. Cao, Thermal Barrier Coating of Lanthanum-Zirconium-Cerium Composite Oxide made by Electron Beam-Physical Vapor Deposition, J. Alloys Compd., 2009, 478, p 168-172CrossRefGoogle Scholar
  32. 32.
    L. Guo, H. Guo, S. Gong, and F. Ye, Improvement on the Phase Stability, Mechanical Properties and Thermal Insulation of Y2O3-Stabilized ZrO2 by Gd2O3 and Yb2O3 co-Doping, Ceram. Int., 2013, 39, p 9009-9015CrossRefGoogle Scholar
  33. 33.
    L. Guo, M. Li, Y. Zhang, and F. Ye, Improved Toughness and Thermal Expansion of Non-stoichiometry Gd2−xZr2+xO7+x/2 Ceramics for Thermal Barrier Coating Application, J. Mater. Sci. Technol., 2016, 32, p 28-33CrossRefGoogle Scholar
  34. 34.
    W. Ma, D.E. Mack, R. Vaben, and D. Stover, Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2008, 91, p 2630-2635CrossRefGoogle Scholar
  35. 35.
    Y. Wang, H. Guo, and S. Gong, Thermal Shock Resistance and Mechanical Properties of La2Ce2O7 Thermal Barrier Coatings with Segmented Structure, Ceram. Int., 2009, 35, p 2639-2644CrossRefGoogle Scholar
  36. 36.
    H. Zhao, R.B. Matthew, H. Arthur, S.M. Reza, and N.G.W. Haydn, Reaction, Transformation and Delamination of Samarium Zirconate Thermal barrier Coatings, Surf. Coat. Technol., 2011, 205, p 4355-4365CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhanChina
  2. 2.Department of Earth and Environmental SciencesLudwig-Maximilians-Universität (LMU) MünichMunichGermany
  3. 3.School of Aerospace EngineeringXiamen UniversityXiamenChina

Personalised recommendations