Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 5, pp 930–938 | Cite as

Fatigue Bending Behavior of Cold-Sprayed Nickel-Based Superalloy Coatings

  • A. Silvello
  • P. CavaliereEmail author
  • A. Rizzo
  • D. Valerini
  • S. Dosta Parras
  • I. Garcia Cano
Peer Reviewed
  • 62 Downloads

Abstract

Cold-sprayed Ni-based superalloy coatings offer new possibilities for manufacturing and repairing damaged components, such as gas turbine blades or other parts of aircraft engines. This development shines a new light on the conventional additive manufacturing technologies and significantly broadens application fields of cold spray. The idea is that cold spray can contribute to improving the fatigue properties of manufacturing and repaired components. This study deals with the analysis of the microstructural and mechanical properties of IN625 cold-sprayed coatings on V-notched carbon steel substrate. Process conditions of 1000 °C and 50 bar were employed to produce coatings in V-notched (60° and 90°) samples in order to evaluate the fatigue crack behavior of the sprayed material. Bending tests were carried out in order to evaluate the crack propagation in the coatings during cyclic loading. The K factor was quantified for the two different notch geometries. After fatigue tests, the cracking mechanisms were observed through SEM. Optical microscopy, nanoindentation as a function of coating/substrate distance and corrosion tests were performed. Porosity measurements through image analyses were done to characterize the coatings’ quality. The results achieved demonstrate that cold spray deposition and repair can contribute to resistance and to the increase in the global fatigue life of cracked structures.

Keywords

cold spray fracture behavior IN625, fatigue superalloys 

Notes

References

  1. 1.
    Y. Hu, M. Madhava, and F. Renteria, Cold gas-dynamic spray repair on gas turbine engine components, United States Patent, 2005. US6905728B1.Google Scholar
  2. 2.
    K. Ogawa and D. Seo, Repair of Turbine Blades Using Cold Spray Technique, Advances in Gas Turbine Technology, E. Benini, Ed., InTech, 2011, https://www.intechopen.com/books/advances-in-gas-turbine-technology/repair-of-turbine-blades-using-coldspray-technique
  3. 3.
    J. Flannery, It’s Time to Pay Attention to AM, Metal AM, Innovar Comunications Ltd, Shrewsbury, 2018Google Scholar
  4. 4.
    S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H. Liao, W. Lid, and R. Lupoi, Cold Spray Additive Manufacturing and Repair: Fundamentals and Applications, Addit. Manuf., 2018, 21, p 628-650.  https://doi.org/10.1016/j.addma.2018.04.017 CrossRefGoogle Scholar
  5. 5.
    P. Cavaliere, A. Perrone, and A. Silvello, Fatigue Behaviour of Inconel 625 Cold Spray Coatings, Surf. Eng., 2018, 34(5), p 380-391CrossRefGoogle Scholar
  6. 6.
    D.R. Muzyka, The Superalloys, C.T. Sims and W.C. Hagel, Ed., Wiley, New York, 1972, p 113-143Google Scholar
  7. 7.
    M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Precipitation of the δ-Ni3Nb Phase in Two Nickel Base Superalloys, Metall. Trans. A, 1988, 19, p 453-465CrossRefGoogle Scholar
  8. 8.
    E. Andrieu, N. Wang, R. Molins, and A. Pineau, in E.A. Loria (ed.) Influence of Compositional Modifications on Thermal Stability of Alloy 718, Superalloys 718, 625 and Various Derivatives. (TMS, 1994), p 695-710.Google Scholar
  9. 9.
    O.B. Armida and J.F. Radavich, A current T-T-T Diagram for Wrought Alloy 718, Superalloy 718, 625 and Various Derivatives. Ed. E.A. Loria, (TMS, 1991), p 325-335.Google Scholar
  10. 10.
    S.H. Fu, J.X. Dong, M.C. Zhang, and X.S. Xie, Alloy Design and Development of INCONEL718 Type Alloy, Mater. Sci. Eng., 2009, A499(1-2), p 215-220CrossRefGoogle Scholar
  11. 11.
    A. Silvello, Cold Spray Coatings-Recent Trends and Future Perspective, P. Cavaliere, Ed., Springer, Berlin, 2018,  https://doi.org/10.1007/978-3-319-67183-3 Google Scholar
  12. 12.
    A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Cold Spray Coating: Review of Material System and Future Perspective, Surf. Eng., 2014, 36(6), p 369-395CrossRefGoogle Scholar
  13. 13.
    J. Henao, A. Concustell, I.G. Cano, S. Dosta, N. Cinca, J.M. Guilemany, and T. Suhonen, Novel Al-Based Metallic Glass Coatings by Cold Gas Spray, Mater. Des., 2016, 94, p 253-261CrossRefGoogle Scholar
  14. 14.
    S. Yin, B. Aldwell, and R. Lupoi, Cold Spray Coatings-Recent Trends and Future Perspective, P. Cavaliere, Ed., Springer, Berlin, 2018,  https://doi.org/10.1007/978-3-319-67183-3 Google Scholar
  15. 15.
    D. Verdi, M.A. Garrido, C.J. Múnez, and P. Poza, Mechanical Properties of Inconel 625 Laser Cladded Coatings: Depth Sensing Indentation Analysis, Mater. Sci. Eng. A, 2014, 598, p 15-21CrossRefGoogle Scholar
  16. 16.
    IN625 Bullettin of Special Metal Company, http://www.specialmetal.com/. Accessed 13 August 2013
  17. 17.
    K. Petráčková, J. Kondás, and M. Guagliano, Mechanical Performance of Cold-Sprayed A357 Aluminum Alloy Coatings for Repair and Additive Manufacturing, J. Therm. Spray Technol., 2017, 26(8), p 1888-1897CrossRefGoogle Scholar
  18. 18.
    A. Moridi, S.M. Hassani-Gangaraj, S. Vezzú, L. Trško, and M. Guagliano, Fatigue Behavior of Cold Spray Coatings: The Effect of Conventional and Severe Shot Peening as Pre-/Post-Treatment, J. Therm. Spray Technol., 2015, 283, p 247-254Google Scholar
  19. 19.
    A. Moridi, S.M. Hassani-Gangaraj, and M. Guagliano, On Fatigue Behavior of Cold Spray Coating, J. Inst. Econ., 2014, 1650(2), p 803Google Scholar
  20. 20.
    R. Ghelichi, S. Bagherifard, D. MacDonald, M. Brochu, H. Jahed, B. Jodoin, and M. Guagliano, Fatigue Strength of Al Alloy Cold Sprayed with Nanocrystalline Powders, Int. J. Fatigue, 2014, 65, p 51-57CrossRefGoogle Scholar
  21. 21.
    P. Cavaliere, Cold-Spray Coatings-Recent Trends and Future Perspectives, Springer, Berlin, 2018,  https://doi.org/10.1007/978-3-319-67183-3 CrossRefGoogle Scholar
  22. 22.
    P. Cavaliere, A. Silvello, N. Cinca, H. Canales, S. Dosta, I. Garcia Cano, and J.M. Guilemany, Microstructural and Fatigue Behavior of Cold Sprayed Ni-Based Superalloys Coatings, Surf. Coat. Technol., 2017, 324, p 390-402CrossRefGoogle Scholar
  23. 23.
    I.C. Noyan and J.B. Cohen, Residual Stress—Measurement by Diffraction and Interpretation. Materials Research and Engineering, Springer, New York, 1987Google Scholar
  24. 24.
    P. Cavaliere, Fatigue Properties and Crack Behavior of Ultra-fine and Nanocrystalline Pure Metals, Int. J. Fatigue, 2009, 31, p 1476-1489CrossRefGoogle Scholar
  25. 25.
    J. Lian, M. Sharaf, F. Archie, and S. Munstermann, A Hybrid Approach for Modelling of Plasticity and Failure Behaviour of Advanced High-Strength Steel Sheets, Int. J. Damage Mech., 2013, 22(2), p 188-218CrossRefGoogle Scholar
  26. 26.
    A. Leyland and A. Matthews, On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behaviour, Wear, 2000, 246, p 1-11.  https://doi.org/10.1016/S0043-1648(00)00488-9 CrossRefGoogle Scholar
  27. 27.
    A. Góral, W. Żórawski, P. Czaja, L. Lityńska-Dobrzyńska, M. Makrenek, and S. Kowalski, Effect of Powder Morphology on the Microstructure and Properties of Cold Sprayed Ni Coatings, Int. J. Mater. Res., 2019, 110(1), p 49-59CrossRefGoogle Scholar
  28. 28.
    X.-L.- Zhou, X.-K. Wu, H.-H. Guo, J.-G. Wang, and J.-S. Zhang, Deposition Behavior of Multi-particle Impact in Cold Spraying Process, Int. J. Min. Met. Mater., 2010, 17(5), p 635-640CrossRefGoogle Scholar
  29. 29.
    R. Huang, M. Sone, W. Ma, and H. Fukanuma, The Effects of Heat Treatment on the Mechanical Properties of Cold-Sprayed Coatings, Surf. Coat. Technol., 2015, 261, p 278-288CrossRefGoogle Scholar
  30. 30.
    K. Petráčková, J. Kondás, and M. Guagliano, Fixing a Hole (with Cold Spray), Int. J. Fatigue, 2018, 110, p 144-152CrossRefGoogle Scholar
  31. 31.
    G. Li, X.-F. Wang, and W.-Y. Li, Effect of Different Incidence Angles on Bonding Performance in Cold Spraying, Trans. Nonferrous Met. Soc., 2007, 17(1), p 116-121CrossRefGoogle Scholar
  32. 32.
    J.A. Nairn, Fracture Mechanics of Composites with Residual Thermal Stresses, J. Appl. Mech., 1997, 64, p 804-810CrossRefGoogle Scholar
  33. 33.
    S.R. Kim and J.A. Nairn, Fracture Mechanics Analysis of Coating/Substrate Systems: II. Experiments in Bending, Eng. Fract. Mech., 2000, 65, p 595-607CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • A. Silvello
    • 1
    • 3
  • P. Cavaliere
    • 1
    Email author
  • A. Rizzo
    • 2
  • D. Valerini
    • 2
  • S. Dosta Parras
    • 3
  • I. Garcia Cano
    • 3
  1. 1.Department of Engineering for InnovationUniversity of SalentoLecceItaly
  2. 2.ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, SSPT-PROMAS-MATASBrindisiItaly
  3. 3.Thermal Spray Centre, CPTUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations