Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 5, pp 904–916 | Cite as

Influence of Alloy Additions on the Microstructure, Texture, and Hardness of Low-Pressure Cold-Sprayed Al-Cu Alloys

  • Tian Liu
  • Jeremy D. Leazer
  • Halle Bannister
  • William A. Story
  • Benjamin D. Bouffard
  • Luke N. BrewerEmail author
Peer Reviewed

Abstract

This paper examines a series of Al-Cu binary alloy coatings, ranging from 2 to 5 weight percent copper, produced using low-pressure cold spray (CS) deposition with helium as the carrier gas. Binary Al-Cu alloy feedstock powder was produced through inert gas atomization and was sprayed over a variety of temperatures and pressures. Using helium gas, this set of Al-Cu alloys was successfully deposited as high-density coatings. Raising the carrier gas pressure increased the particle velocity and deposition efficiency (DE) in the case of spraying the Al-5 wt.% Cu powders. A clear composite deformation structure was formed in all coatings with clear prior particle centers surrounded by severely deformed regions with ultrafine grains. Microstructural deformation generated by the CS process produced a weak but clear <110> fiber texture for both Al-2 wt.% Cu and Al-5 wt.% Cu coatings. The copper content of the feedstock powder directly influenced the coating hardness and porosity, while having no systematic effect on the DE.

Keywords

Al-Cu alloy coatings cold spray deposition efficiency fiber texture 

Notes

Acknowledgments

We are grateful to J.A. Christophersen and J.N. Wolk for assistance with the compressed air cold spray deposition and characterization portion of this research. This research was supported by the funding from Mr. William Nickerson of the Office of Naval Research (Code 35 Sea-Based Aviation Structures and Materials, N0001414WX00148) and the funding from the college of engineering at the University of Alabama.

References

  1. 1.
    J. Villafuerte and D. Wright, Practical Cold Spray Success: Repair of Al and Mg Alloy Aircraft Components, Adv. Mater. Processes, 2010, 168(5), p 53-55Google Scholar
  2. 2.
    J. Villafuerte, Modern Cold Spray: Materials, Process, and Applications, Springer International Publishing, Basel, 2015CrossRefGoogle Scholar
  3. 3.
    V.K. Champagne, D.J. Helfritch, S.P.G. Dinavahi, and P.F. Leyman, Theoretical and Experimental Particle Velocity in Cold Spray, J. Therm. Spray Technol., 2011, 20(3), p 425-431CrossRefGoogle Scholar
  4. 4.
    Q. Wang, N. Birbilis, H. Huang, and M.-X. Zhang, Microstructure Characterization and Nanomechanics of Cold-Sprayed Pure Al and Al-Al2O3 Composite Coatings, Surf. Coat. Technol., 2013, 232, p 216-223CrossRefGoogle Scholar
  5. 5.
    X.-J. Ning, J.-H. Jang, and H.-J. Kim, The Effects of Powder Properties on In-Flight Particle Velocity and Deposition Process during Low Pressure Cold Spray Process, Appl. Surf. Sci., 2007, 253(18), p 7449-7455CrossRefGoogle Scholar
  6. 6.
    P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, and C. Lee, An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates, J. Therm. Spray Technol., 2010, 19(3), p 620-634CrossRefGoogle Scholar
  7. 7.
    X.M. Meng, J.B. Zhang, W. Han, J. Zhao, and Y.L. Liang, Influence of Annealing Treatment on the Microstructure and Mechanical Performance of Cold Sprayed 304 Stainless Steel Coating, Appl. Surf. Sci., 2011, 258(2), p 700-704CrossRefGoogle Scholar
  8. 8.
    K. Spencer and M.-X. Zhang, Optimisation of Stainless Steel Cold Spray Coatings Using Mixed Particle Size Distributions, Surf. Coat. Technol., 2011, 205(21), p 5135-5140CrossRefGoogle Scholar
  9. 9.
    M. Rokni, S. Nutt, C. Widener, V. Champagne, and R. Hrabe, Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray, J. Therm. Spray Technol., 2017, 26(6), p 1308-1355CrossRefGoogle Scholar
  10. 10.
    N. Matthews, R. Jones, and G. Sih, Application of Supersonic Particle Deposition to Enhance the Structural Integrity of Aircraft Structures, Sci. China Phys. Mech. Astron., 2014, 57(1), p 12-18CrossRefGoogle Scholar
  11. 11.
    R. Jones, L. Molent, S. Barter, N. Matthews, and D. Tamboli, Supersonic Particle Deposition as a Means for Enhancing the Structural Integrity of Aircraft Structures, Int. J. Fatigue, 2014, 68, p 260-268CrossRefGoogle Scholar
  12. 12.
    K. Petráčková, J. Kondás, and M. Guagliano, Fixing a Hole (with Cold Spray), Int. J. Fatigue, 2018, 110, p 144-152CrossRefGoogle Scholar
  13. 13.
    M. Rokni, C. Widener, and G. Crawford, Microstructural Evolution of 7075 Al Gas Atomized Powder and High-Pressure Cold Sprayed Deposition, Surf. Coat. Technol., 2014, 251, p 254-263CrossRefGoogle Scholar
  14. 14.
    M. Rokni, C. Widener, O. Ozdemir, and G. Crawford, Microstructure and Mechanical Properties of Cold Sprayed 6061 Al in As-Sprayed and Heat Treated Condition, Surf. Coat. Technol., 2017, 309, p 641-650CrossRefGoogle Scholar
  15. 15.
    M.R. Rokni and C.A. Widener, Microstructural Stability of Ultrafine Grained Cold Sprayed 6061 Aluminum Alloy, Appl. Surf. Sci., 2014, 290, p 482-489CrossRefGoogle Scholar
  16. 16.
    L. Ajdelsztajn, A. Zuniga, B. Jodoin, and E. Lavernia, Cold Gas Dynamic Spraying of a High Temperature Al Alloy, Surf. Coat. Technol., 2006, 201(6), p 2109-2116CrossRefGoogle Scholar
  17. 17.
    T. Liu, J.D. Leazer, S.K. Menon, and L.N. Brewer, Microstructural Analysis of Gas Atomized Al-Cu Alloy Feedstock Powders for Cold Spray Deposition, Surf. Coat. Technol., 2018, 350, p 621-632CrossRefGoogle Scholar
  18. 18.
    L. Pouliot, CSM eVOLUTION Product Manual, TECNAR Automation Ltd, Saint-Bruno-de-Montarville, 2013Google Scholar
  19. 19.
    M. Karri, J. Singh, K. Manikrishna, B. Kumawat, N. Kumar, and D. Srivastava, On the Suitability of Peak Profile Analysis Models for Estimating Dislocation Density, Mater. Sci. Eng. A, 2017, 700, p 75-81CrossRefGoogle Scholar
  20. 20.
    U. Martin, U. Muhle, and H. Oettel, The Quantitative Measurement of Dislocation Density in the Transmission Electron Microscope, Prakt. Metallogr., 1995, 32(9), p 467-476Google Scholar
  21. 21.
    R. Huang and H. Fukanuma, Study of the Influence of Particle Velocity on Adhesive Strength of Cold Spray Deposits, J. Therm. Spray Technol., 2012, 21(3–4), p 541-549CrossRefGoogle Scholar
  22. 22.
    T.R. Jayasingh, T.R. Jeyaseelan, C. Kannan, and M.G. Karthikeyan, Numerical (CFD) Analysis of Thermal Spray Coating Process, Int. J. Mod. Eng. Res., 2014, 4(3), p 46-62Google Scholar
  23. 23.
    D. Gilmore, R. Dykhuizen, R. Neiser, M. Smith, and T. Roemer, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582CrossRefGoogle Scholar
  24. 24.
    M. Rokni, C. Widener, and V. Champagne, Microstructural Evolution of 6061 Aluminum Gas-Atomized Powder and High-Pressure Cold-Sprayed Deposition, J. Therm. Spray Technol., 2014, 23(3), p 514-524CrossRefGoogle Scholar
  25. 25.
    L. Brewer, M. Othon, L. Young, and T. Angeliu, Misorientation Mapping for Visualization of Plastic Deformation via Electron Back-Scattered Diffraction, Microsc. Microanal., 2006, 12(1), p 85-91CrossRefGoogle Scholar
  26. 26.
    A.C. Hall and L.N. Brewer, Preparation of Aluminum Coatings Containing Homogenous Nanocrystalline Microstructures Using the Cold Spray Process, J. Therm. Spray Technol., 2008, 17(3), p 352-359CrossRefGoogle Scholar
  27. 27.
    M. Meyers, Y. Xu, Q. Xue, M. Perez-Prado, and T. McNelley, Microstructural Evolution in Adiabatic Shear Localization in Stainless Steel, Acta Mater., 2003, 51(5), p 1307-1325CrossRefGoogle Scholar
  28. 28.
    M. Drury and F. Humphreys, The Development of Microstructure in Al-5% Mg During High Temperature Deformation, Acta Metall., 1986, 34(11), p 2259-2271CrossRefGoogle Scholar
  29. 29.
    F.J. Humphreys and M. Hatherly, Chapter 13 Hot Deformation and Dynamic Restoration, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004, p 415-450Google Scholar
  30. 30.
    Y. Zou, W. Qin, E. Irissou, J.-G. Legoux, S. Yue, and J.A. Szpunar, Dynamic Recrystallization in the Particle/Particle Interfacial Region of Cold-Sprayed Nickel Coating: Electron Backscatter Diffraction Characterization, Scr. Mater., 2009, 61(9), p 899-902CrossRefGoogle Scholar
  31. 31.
    A. Mishra, B. Kad, F. Gregori, and M. Meyers, Microstructural Evolution in Copper Subjected to Severe Plastic Deformation: Experiments and Analysis, Acta Mater., 2007, 55(1), p 13-28CrossRefGoogle Scholar
  32. 32.
    J. Hines and K. Vecchio, Recrystallization Kinetics Within Adiabatic Shear Bands, Acta Mater., 1997, 45(2), p 635-649CrossRefGoogle Scholar
  33. 33.
    J.A. Hines, K.S. Vecchio, and S. Ahzi, A Model for Microstructure Evolution in Adiabatic Shear Bands, Metall. Mater. Trans. A, 1998, 29(1), p 191-203CrossRefGoogle Scholar
  34. 34.
    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394CrossRefGoogle Scholar
  35. 35.
    T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742CrossRefGoogle Scholar
  36. 36.
    Y. Xiong, K. Kang, G. Bae, S. Yoon, and C. Lee, Dynamic Amorphization and Recrystallization of Metals in Kinetic Spray Process, Appl. Phys. Lett., 2008, 92(19), p 194101CrossRefGoogle Scholar
  37. 37.
    K. Kim, M. Watanabe, and S. Kuroda, Bonding Mechanisms of Thermally Softened Metallic Powder Particles and Substrates Impacted at High Velocity, Surf. Coat. Technol., 2010, 204(14), p 2175-2180CrossRefGoogle Scholar
  38. 38.
    K. Kang, J. Won, G. Bae, S. Ha, and C. Lee, Interfacial Bonding and Microstructural Evolution of Al in Kinetic Spraying, J. Mater. Sci., 2012, 47(11), p 4649-4659CrossRefGoogle Scholar
  39. 39.
    P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, and C. Lee, An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates, J. Therm. Spray Technol., 2009, 19(3), p 620-634CrossRefGoogle Scholar
  40. 40.
    A. Day, P. Trimby, K. Mehnert, and B. Neumann, Channel 5 User Manual, HKL Technology A/S, Hobro, 2001Google Scholar
  41. 41.
    K. Kang, H. Park, G. Bae, and C. Lee, Microstructure and Texture of Al Coating During Kinetic Spraying and Heat Treatment, J. Mater. Sci., 2012, 47(9), p 4053-4061CrossRefGoogle Scholar
  42. 42.
    F. Humphreys and M. Hatherly, Chapter 3 Deformation Texture, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004, p 67-89CrossRefGoogle Scholar
  43. 43.
    T. Schulthess, P. Turchi, A. Gonis, and T.G. Nieh, Stacking Fault Energies in Al-Based Alloys, Properties of Complex Inorganic Solids, A. Gonis, A. Meike, and P.E.A. Turchi, Ed., Plenum Publishing Co., Boston, 1997, p 383-388CrossRefGoogle Scholar
  44. 44.
    S. Son, M. Takeda, M. Mitome, Y. Bando, and T. Endo, Precipitation Behavior of an Al-Cu Alloy During Isothermal Aging at Low Temperatures, Mater. Lett., 2005, 59(6), p 629-632CrossRefGoogle Scholar
  45. 45.
    K. Ichikawa, Y. Kinoshita, and S. Shimamura, Grain Refinement in Al-Cu Binary Alloys by Rheocasting, Trans. Jpn. Inst. Met., 1985, 26(7), p 513-522CrossRefGoogle Scholar
  46. 46.
    D. Xiao, J. Wang, D. Ding, and S. Chen, Effect of Cu Content on the Mechanical Properties of an Al-Cu-Mg-Ag Alloy, J. Alloys Compd., 2002, 343(1), p 77-81CrossRefGoogle Scholar
  47. 47.
    M. Murayama, Z. Horita, and K. Hono, Microstructure of Two-Phase Al-1.7 at% Cu Alloy Deformed by Equal-Channel Angular Pressing, Acta Mater., 2001, 49(1), p 21-29CrossRefGoogle Scholar
  48. 48.
    T. Shanmugasundaram, B. Murty, and V.S. Sarma, Development of Ultrafine Grained High Strength Al-Cu Alloy by Cryorolling, Scr. Mater., 2006, 54(12), p 2013-2017CrossRefGoogle Scholar
  49. 49.
    S. Ringer, K. Hono, and T. Sakurai, The Effect of Trace Additions of Sn on Precipitation in Al-Cu Alloys: An Atom Probe Field Ion Microscopy Study, Metall. Mater. Trans. A, 1995, 26(9), p 2207-2217CrossRefGoogle Scholar
  50. 50.
    N. Bekheet, R. Gadelrab, M. Salah, and A.A. El-Azim, The Effects of Aging on the Hardness and Fatigue Behavior of 2024 Al alloy/SiC Composites, Mater. Des., 2002, 23(2), p 153-159CrossRefGoogle Scholar
  51. 51.
    M. Rokni, C. Widener, A. Nardi, and V. Champagne, Nano Crystalline High Energy Milled 5083 Al Powder Deposited Using Cold Spray, Appl. Surf. Sci., 2014, 305, p 797-804CrossRefGoogle Scholar
  52. 52.
    M. Rokni, C. Widener, G. Crawford, and M. West, An Investigation into Microstructure and Mechanical Properties of Cold Sprayed 7075 Al Deposition, Mater. Sci. Eng. A, 2015, 625, p 19-27CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Tian Liu
    • 1
  • Jeremy D. Leazer
    • 2
  • Halle Bannister
    • 1
  • William A. Story
    • 1
  • Benjamin D. Bouffard
    • 3
  • Luke N. Brewer
    • 1
    Email author
  1. 1.University of AlabamaTuscaloosaUSA
  2. 2.Naval Postgraduate SchoolMontereyUSA
  3. 3.Naval Surface Warfare Center, Carderock DivisionWest BethesdaUSA

Personalised recommendations