Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 3, pp 544–562 | Cite as

Effect of Addition of Multimodal YSZ and SiC Powders on the Mechanical Properties of Nanostructured Cr2O3 Plasma-Sprayed Coatings

  • S. M. Hashemi
  • N. ParvinEmail author
  • Z. Valefi
Peer Reviewed
  • 20 Downloads

Abstract

In this research, the effect of the addition of multimodal yttria-stabilized zirconia (YSZ) and SiC reinforcements on the mechanical properties of Cr2O3 plasma-sprayed coatings was studied. For this purpose, the starting powders were ball milled for 5 h and then mixed and agglomerated, prior to spraying. Cr2O3, Cr2O3-20YSZ (CZ), and Cr2O3-20YSZ-10SiC (CZS) coatings were then deposited onto 304L steel substrates using the atmospheric plasma spray process. Microstructural evaluations of the initial/milled powders and the plasma-sprayed coatings were conducted through x-ray diffraction, field emission scanning electron microscopy (FESEM) equipped with energy-dispersive x-ray spectroscopy and porosity measurements. The microscopic images indicated that the multimodal milled powders resulted in nanostructured coatings. Mechanical tests including adhesive strength, fracture toughness, and micro-hardness were used to understand the dependence of the properties of coatings and their microstructure. Adding tough YSZ particles to the C coating considerably increased the toughness through the phase transformation-toughening mechanism of tetragonal zirconia while decreasing micro-hardness of the coating; therefore, intrinsically hard SiC particles were added to the CZ coating to deal with the reduced hardness. Moreover, when compared to pure C coating, CZ, and CZS Composite coatings showed comparable bonding strengths and higher porosities.

Keywords

ceramic matrix composite Cr2O3-YSZ-SiC mechanical properties multimodal nanostructured coating plasma spraying 

References

  1. 1.
    D.J. Green, An Introduction to the Mechanical Properties of Ceramics, Cambridge University Press, Cambridge, 1998Google Scholar
  2. 2.
    L.L. Mishnaevsky, Jr., Three-dimensional Numerical Testing of Microstructures of Particle Reinforced Composites, J. Acta Mater., 2004, 52(14), p 4177-4188Google Scholar
  3. 3.
    M.M.E. Rayes, H.S. Abdo, and K.A. Khalil, Erosion-Corrosion of Cermet Coating, J. Electrochem. Sci., 2013, 8, p 1117-1137Google Scholar
  4. 4.
    R. Banerjee and I. Manna, Ceramic Nanocomposites (Woodhead Publishing, 2013)Google Scholar
  5. 5.
    E.I.C. Suryanarayana, T. Klassen, and E. Ivanov, Synthesis of Nanocomposites and Amorphous Alloys by Mechanical Alloying, J. Mater. Sci., 2011, 46(19), p 6301-6315Google Scholar
  6. 6.
    J. Karch, R. Birringer, and H. Gleiter, Ceramics Ductile at Low Temperature, Nature, 1987, 330, p 556-558Google Scholar
  7. 7.
    W.M. Rainforth, The Wear Behaviour of Oxide Ceramics-A Review, J. Mater. Sci., 2004, 39(22), p 6705-6721Google Scholar
  8. 8.
    B. Cantor, F.P.E. Dunne, and I.C. Stone, Metal and Ceramic Matrix Composites, 1st edn. (CRC Press, 2003)Google Scholar
  9. 9.
    B. Basu and K. Balani, Advanced Structural Ceramics, 1st edn. (Wiley-American Ceramic Society, 2011)Google Scholar
  10. 10.
    A. Vardelle, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440Google Scholar
  11. 11.
    I. Adamovich, S.D. Baalrud, A. Bogaerts, P.J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J.G. Eden, P. Favia, D.B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I.D. Kaganovich, U. Kortshagen, M.J. Kushner, N.J. Mason, S. Mazouffre, S.M. Thagard, H.R. Metelmann, A. Mizuno, E. Moreau, A.B. Murphy, B.A. Niemira, G.S. Oehrlein, Z.L. Petrovic, L.C. Pitchford, Y.K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M.M. Turner, M.C.M. Sanden, and A. Vardelle, The 2017 Plasma Roadmap: Low Temperature Plasma Science and Technology, J. Phys. D Appl. Phys., 2017, 2017(50), p 1-46Google Scholar
  12. 12.
    V. Chawla, B.S. Sidhu, D. Puri, and S. Prakash, Performance of Plasma Sprayed Nanostructured and Conventional Coatings, J. Aust. Ceram. Soc., 2008, 44(2), p 56-62Google Scholar
  13. 13.
    D. Ghosh, A.K. Shukhla, and H. Roy, Nano Structured Plasma Spray Coating for Wear and High Temperature Corrosion Resistance Applications, J. Inst. Eng.: Series D, 2014, 95(1), p 57-64Google Scholar
  14. 14.
    M. Gell, E.H. Jordan, Y.H. Sohn, D. Goberman, L. Shaw, and T.D. Xiao, Development and Implementation of plasma Sprayed Nanostructured Ceramic Coatings, Surf. Coatings Technol., 2001, 146, p 48-54Google Scholar
  15. 15.
    R.S. Lima and B.R. Marple, Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review, J. Therm. Spray Technol., 2007, 16(1), p 40-63Google Scholar
  16. 16.
    N.B. Dahotre and S. Nayak, Nanocoatings for engine application, Surf. Coatings Technol., 2005, 194(1), p 58-67Google Scholar
  17. 17.
    M. Brochu and G.E. Kim, Anti-Abrasive Nanocoatings Current and Future Applications, chap. 19 (Woodhead Publishing in Materials, 2015)Google Scholar
  18. 18.
    G. Skandan, R. Yao, B.H. Kear, Y. Qiao, L. Liu, and T.E. Ficsher, Multimodal Powders: A New Class of Feedstock Material for Thermal Spraying of Hard Coatings, Scr. Mater., 2001, 44(8), p 1699-1702Google Scholar
  19. 19.
    G. Skandan, R. Yao, R. Sadangi, B.H. Kear, Y. Qiao, L. Liu, and T.E. Ficsher, Multimodal Coatings: A New Concept in Thermal Spraying, J. Therm. Spray Technol., 2000, 9(3), p 329-331Google Scholar
  20. 20.
    J.A. Gan and C.C. Berndt, Nanocomposite Coatings: Thermal Spray Processing, Microstructure and Performance, Int. Mater. Rev., 2014, 60(4), p 195-244Google Scholar
  21. 21.
    R.F. Bunshah, Handbook of Hard Coatings: Deposition Technolgies, Properties and Applications, 1st edn. (William Andrew, 2000)Google Scholar
  22. 22.
    G. Bolelli, V. Cannillo, L. Lusvarghi, and T. Manfredini, Wear Behaviour of Thermally Sprayed Ceramic Oxide Coatings, Wear, 2006, 261(11), p 1298-1315Google Scholar
  23. 23.
    A. Vardelle, Ch Moreau, and N.J. Themelis, A Perspective on Plasma Spray Technology, Plasma Chem. Plasma Process., 2015, 35(3), p 491-509Google Scholar
  24. 24.
    A. Cellard, V. Garnier, G. Fantozzi, G. Baret, and P. Fort, Wear Resistance of Chromium Oxide Nanostructured Coatings, Ceram. Int., 2009, 35(2), p 913-916Google Scholar
  25. 25.
    P. Ctibor, I. Pıs, J. Kotlan, I. Khalakhan, V. Stengl, and P. Homola, Microstructure and Properties of Plasma-Sprayed Mixture of Cr2O3 and TiO2, J. Therm. Spray Technol., 2013, 22(7), p 1163-1169Google Scholar
  26. 26.
    J. Li, Y. Zhang, J. Huang, and C. Ding, Mechanical and Tribological Properties of Plasma-Sprayed Cr3C2-NiCr, WC-Co, and Cr2O3 Coatings, J. Therm. Spray Technol., 1998, 7(2), p 242-246Google Scholar
  27. 27.
    M. Szafarska and J. Iwaszko, Laser Remelting Teratment of Plasma-Sprayed Cr2O3 Oxide Coatings, Arch. Metall. Mater., 2012, 57(1), p 215-221Google Scholar
  28. 28.
    D.W. Richerson, Modern Ceramic Engineering: Properties, Processing, and Use in Design, 3rd edn. (CRC Press, 2012)Google Scholar
  29. 29.
    A. Nusair Khan, J. Lu, and H. Lioa, Heat Treatment of Thermal Barrier Coatings, Mater. Sci. Eng. A, 2003, 359(1), p 129-136Google Scholar
  30. 30.
    S.T. Aruna, N. Balaji, and K.S. Rajam, Phase Transformation and Wear Studies of Plasma Sprayed Yttria Stabilized Zirconia Coatings Containing Various mol% of Yttria, Mater. Charact., 2011, 62(7), p 697-705Google Scholar
  31. 31.
    O. Roberts, A.J.G. Lunt, S. Ying, T. Sui, N. Baimpas, I.P. Dolbnya, M. Parkes, D. Dini, S.M. Kreynin, T.K. Neo, and A.M. Korsunsky, A Study of Phase Transformation at the Surface of a Zirconia Ceramic, in: Proc. World Congr. Eng. 2014 Vol 2 (2014, London)Google Scholar
  32. 32.
    N. Zhang and M.A. Zaeem, Competing Mechanisms between Dislocation and Phase Transformation in Plastic Deformation of Single Crystalline Yttria-Stabilized Tetragonal Zirconia Nanopillars, Acta Mater., 2016, 120, p 337-347Google Scholar
  33. 33.
    G. Witz, V. Shklover, W. Steurer, S. Bachegowda, and H.P. Bossmann, Phase Evolution in Yttria-Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X-Ray Powder Diffraction Patterns, Am. Ceram. Soc., 2007, 90(9), p 2935-2940Google Scholar
  34. 34.
    S. Tao, B. Liang, C. Ding, H. Liao, and C. Coddet, Wear Characteristics of Plasma-Sprayed Nanostructured Yttria Partially Stabilized Zirconia Coatings, J. Therm. Spray Technol., 2005, 14(4), p 518-523Google Scholar
  35. 35.
    M. Guazzato, M. Albakry, S.P. Ringer, and M.V. Swain, Strength, Fracture Toughness and Microstructure of a Selection of All-ceramic Materials. Part II. Zirconia-based Dental Ceramics, Dental Mater., 2004, 20(5), p 449-456Google Scholar
  36. 36.
    A.K. Mishra, Ed., Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications, chap. 2 (Springer International Publishing, 2017)Google Scholar
  37. 37.
    N. Dejang, A. Limpichaipanit, A. Watcharapasorn, S. Wirojanupatump, P. Niranatlumpong, and S. Jiansirisomboon, Fabrication and Properties of Plasma-Sprayed Al2O3/ZrO2 Composite Coatings, J. Therm. Spray Technol., 2011, 20(6), p 1259-1268Google Scholar
  38. 38.
    R. Khanna, J. Ong, E. Oral, and R. Narayan, Progress in Wear Resistant Materials for Total Hip Arthroplasty, Coatings, 2017, 7(7), p 99Google Scholar
  39. 39.
    E. Bakan and R. Vaben, Ceramic Top Coats of Plasma-sprayed Thermal Barrier Coatings: Materials, Processes, and Properties, J. Therm. Spray Technol., 2017, 26(6), p 992-1010Google Scholar
  40. 40.
    S.R. Choi, D. Zhu, and R.A. Miller, Mechanical Properties/Database of Plasma Sprayed ZrO2-8wt% Y2O3 Thermal Barrier Coatings, Appl. Ceram. Technol., 2005, 1(4), p 330-342Google Scholar
  41. 41.
    J. Zhao, The Use of Ceramic Matrix Composites for Metal Cutting Applications, Advances in Ceramic Matrix Composites (Elsevier, 2014), pp. 623–654Google Scholar
  42. 42.
    S.Y. Liu, Y. Wang, C. Zhou, and Z.Y. Pan, Mechanical Properties and Tribological Behavior of Alumina/Zirconia Composites Modified with SiC and Plasma Treatment, Wear, 2015, 332–333, p 885-890Google Scholar
  43. 43.
    Z.Y. Pan, Y. Wang, X.W. Li, C.H. Wang, and Z.W. Zou, Effect of Submicron and Nano SiC Particles on Erosion Wear and Scratch Behavior of Plasma-Sprayed Al2O3/8YSZ Coatings, J. Therm. Spray Technol., 2012, 21(5), p 995-1010Google Scholar
  44. 44.
    J. Lin, Y. Huang, and H. Zhang, Damage Resistance, R-curve Behavior and Toughening Mechanisms of ZrB2-based Composites with SiC Whiskers and ZrO2 Fibers, Ceram. Int., 2015, 41(2), p 2690-2698Google Scholar
  45. 45.
    L. Chen, Y. Wang, H. Shen, J. Rao, and Y. Zhou, Effect of SiC Content on Mechanical Properties and Thermal Shock Resistance of BN-ZrO2-SiC composites, Mater. Sci. Eng., A, 2014, 590, p 346-351Google Scholar
  46. 46.
    J.O. Berghaus, J.G. Legoux, Ch Moreau, F. Tarasi, and T. Chraska, Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings, J. Therm. Spray Technol., 2008, 17(1), p 91-104Google Scholar
  47. 47.
    F.M. Katubilwa and M.H. Moys, Effect of Ball Size Distribution on Milling Rate, Miner. Eng., 2009, 22(15), p 1283-1288Google Scholar
  48. 48.
    K.M. Kabezya and H. Motjotji, The Effect of Ball Size Diameter on Milling Performance, J. Mater. Sci. Eng., 2014, 4(1), p 1-3Google Scholar
  49. 49.
    N. Hlabangana, G. Danha, and E. Muzenda, Effect of Ball and Feed Particle Size Distribution on the Milling Efficiency of a Ball Mill: An Attainable Region Approach, S. Afr. J. Chem. Eng., 2018, 25, p 79-84Google Scholar
  50. 50.
    H. Ghayour, M. Abdellahi, and M. Bahmanpour, Optimization of the High Energy Ball-milling: Modeling and Parametric Study, Powder Technol., 2016, 291, p 7-13Google Scholar
  51. 51.
    M.K. Singla, H. Singh, and V. Chawla, Thermal Sprayed CNT Reinforced Nanocomposite Coatings-A Review, J. Miner. Mater. Charact. Eng., 2011, 10(8), p 717-726Google Scholar
  52. 52.
    P. Bengtsson and C. Persson, Modelled and Measured Residual Stresses in Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 1997, 92(1–2), p 78-86Google Scholar
  53. 53.
    S. Chandra and P. Fauchais, Formation of Solid Splats During Thermal Spray Deposition, J. Therm. Spray Technol., 2009, 18(2), p 148-180Google Scholar
  54. 54.
    C. Li, X. Zhang, Y. Chen, J. Carr, S. Jacques, J. Behnsen, M. Di Michiel, P. Xiao, and R. Cernik, Understanding the Residual Stress Distribution Through the Thickness of Atmosphere Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) By High Energy Synchrotron Xrd; Digital Image Correlation (DIC) and Image Based Modelling, Acta Mater., 2017, 132, p 1-12Google Scholar
  55. 55.
    K. Yang, X. Zhou, C. Liu, S. Tao, and C. Ding, Sliding Wear Performance of Plasma-Sprayed Al2O3-Cr2O3 Composite Coatings Against Graphite under Severe Conditions, J. Therm. Spray Technol., 2013, 22(7), p 1154-1162Google Scholar
  56. 56.
    R.C. Tucker, Ed., ASM Handbook, Vol 5A, Thermal Spray Technology, ASM International, Russell, 2013Google Scholar
  57. 57.
    G.K. Beshish, C.W. Florey, F.J. Worzala, and W.J. Lenling, Fracture Toughness of Thermal Spray Ceramic Coatings Determined by the Indentation Technique, J. Therm. Spray Technol., 1993, 2(1), p 35-38Google Scholar
  58. 58.
    A.G. Evans and E.A. Charles, Fracture Toughness Determinations by Indentation, J. Am. Cer. Soc., 1976, 59(7–8), p 371-372Google Scholar
  59. 59.
    A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, and M. Nganbe, Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened Al2O3 and SiC Armor, J. Mater. Sci. Tech., 2015, 31(8), p 773-783Google Scholar
  60. 60.
    A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen, Determination of Fracture Toughness using the Area of Micro-Crack Tracks Left in Brittle Materials by Vickers Indentation Test, J. Adv. Cer., 2013, 2(1), p 87-102Google Scholar
  61. 61.
    G.D. Quinn, Fracture Toughness of Ceramics by the Vickers Indentation Crack Length Method A Critical Review, Ceram. Eng. Sci. Proc., 2007, 27(3), p 45-62Google Scholar
  62. 62.
    D. Coric, L. Curkovic, and M.M. Renjo, Statistical Analysis of Vickers Indentation Fracture Toughness of Y-TZP Ceramics, Trans. Famena, 2017, 41(2), p 1-16Google Scholar
  63. 63.
    A.S. Deliormanli and M. Guden, Microhardness and Fracture Toughness of Dental Materials by Indentation Method, J. Biomedical Mater. Res., 2006, 76(2), p 257-264Google Scholar
  64. 64.
    Y. Feng and T. Zhang, Determination of Fracture Toughness of Brittle materials by Indentation, Acta Mech. Sol. Sin., 2015, 28(3), p 221-234Google Scholar
  65. 65.
    K. Tanaka, Elastic-plastic Indentation Hardness and Indentation Fracture Toughness, the Inclusion Core Model, J. Mater. Sci., 1987, 22(4), p 1501-1508Google Scholar
  66. 66.
    B.R. Lawn and E.R. Fuller, Equilibrium Penny-like Cracks in Indentation Fracture, J. Mater. Sci., 1975, 10(12), p 2016-2024Google Scholar
  67. 67.
    A.G. Evans and T.R. Wilshaw, Quasi-Static Solid Particle Damage in Brittle Solids, Observations, Analysis and Implications, Acta Metall., 1976, 24(10), p 939-956Google Scholar
  68. 68.
    D.K. Shetty, I.G. Wright, P.N. Mincer, and A.H. Clauer, Indentation Fracture of WC-Co Cermets, J. Mater. Sci., 1985, 20(5), p 1873-1882Google Scholar
  69. 69.
    K. Niihara, R. Morena, and D.P.H. Hasselman, Evaluation of KIC of Brittle Solids by the Indentation Method with Low Crack-to-Indent Ratios, J. Mater. Sci. Let., 1982, 1(1), p 13-16Google Scholar
  70. 70.
    P. Zamani and Z. Valefi, Microstructure, Phase Composition and Mechanical Properties of Plasma Sprayed Al2O3, Cr2O3, and Cr2O3-Al2O3 Composite Coatings, Surf. Coat. Technol., 2017, 316, p 138-145Google Scholar
  71. 71.
    P. Fauchais, G. Montavon, and G. Bertrand, From Powders to Thermally Sprayed Coatings, J. Therm. Spray Technol., 2010, 19(1–2), p 56-80Google Scholar
  72. 72.
    M. Harju, T. Mantyla, K. Vaha-Heikkila, and V.P. Lehto, Water Adsorption on Plasma Sprayed Transition Metal Oxides, Appl. Surf. Sci., 2005, 249(1-4), p 115-126Google Scholar
  73. 73.
    M. Toozandehjani, K.A. Matori, F. Ostovan, S. Abdul Aziz, and M.S. Mamat, Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy, Materials (Basel), 2017, 10(11), p 1-17Google Scholar
  74. 74.
    J.B. Rao, G.J. Catherin, I.N. Murthy, D.V. Rao, and B.N. Raju, Production of Nano Structured Silicon Carbide by High Energy Ball Milling, Int. J. Eng. Sci. Technol., 2011, 3(4), p 82-88Google Scholar
  75. 75.
    G. Rajender and P.K. Giri, Strain Induced Phase Formation, Microstructural Evolution and Bandgap Narrowing in Strained TiO2 Nanocrystals Grown by Ball Milling, J. Alloys Comp., 2016, 676, p 591-600Google Scholar
  76. 76.
    C.P. Gazzara, The Measurement of Residual Stress with x-ray Diffraction (Army materials and mechanics research center, 1983)Google Scholar
  77. 77.
    A. Bahera and S.C. Mishra, Prediction and Analysis of Deposition Efficiency of Plasma Spray Coating using Artificial Intelligence Method, Compos. Mater., 2012, 2(2), p 54-60Google Scholar
  78. 78.
    V.P. Singh, A. Sil, and R. Jayaganthan, Wear of Plasma Sprayed Conventional and Nanostructured Al2O3 and Cr2O3, Based Coatings, Trans. Indian Inst. Met., 2012, 65(1), p 1-12Google Scholar
  79. 79.
    D.G. Goberman, Microstructure Investigation of Plasma Sprayed Alumina 13 Weight Percent Titania Coatings from Nanocrystalline Feed Powders, Ph.D. Thesis, University of Connecticut, 2002Google Scholar
  80. 80.
    F. Onoue and K. Tsuji, X-Ray Elemental Imaging in Depth by Combination of FE-SEM-EDS and Glow Discharge Sputtering, ISIJ Int., 2013, 53(11), p 1939-1942Google Scholar
  81. 81.
    W. Chi, S. Sampath, and H. Wang, Ambient and High-temperature Thermal Conductivity of Thermal Sprayed Coatings, J. Therm. Spray Technol., 2006, 15(4), p 773-778Google Scholar
  82. 82.
    K.W. Schlichting, N.P. Padture, and P.G. Klemens, Thermal Conductivity of Dense and Porous Yttria-stabilized Zirconia, Mater. Sci., 2001, 36(12), p 3003-3010Google Scholar
  83. 83.
    E.M. Garcia, Optimizing the Sintering of Cr 2 O 3-nano Powders for HVOF Applications, M.Sc. Thesis, the University Carlos III of Madrid, 2012Google Scholar
  84. 84.
    R.G. Munro, Material Properties of a Sintered α-SiC, Phys. Chem. Ref. Data., 2009, 26(5), p 1195-1205Google Scholar
  85. 85.
    J. Zhang and V. Desai, Evaluation of Thickness, Porosity and Pore Shape of Plasma Sprayed TBC by Electrochemical Impedance Spectroscopy, Surf. Coatings Technol., 2005, 190(1), p 98-109Google Scholar
  86. 86.
    C.B. Ponton and R.D. Rawlings, Vickers Indentation Fracture Toughness Test Part 1 Review of Literature and Formulation of Standardised Indentation Toughness Equations, Mater. Sci. Tech., 1989, 5(9), p 865-872Google Scholar
  87. 87.
    T.A. Fabijanic, D. Coric, M.S. Musa, and M. Sakoman, Vickers Indentation Fracture Toughness of Near-Nano and Nanostructured WC-Co Cemented Carbides, Metals, 2017, 7, p 143-159Google Scholar
  88. 88.
    M. Kutz, Handbook of Materials Selection, Wiley, NY, 2002Google Scholar
  89. 89.
    A.G. Gogotsi, Fracture Toughness of Ceramics and Ceramic Composites, Ceram. Int., 2003, 29, p 777-784Google Scholar
  90. 90.
    Y. Takano, T. Komeda, M. Yoshinaka, K. Hirota, and O. Yamaguchi, Fabrication, Microstructure, and Mechanical Properties of Cr2O3/ZrO2(2.5Y) Composite Ceramics in the Cr2O3-Rich Region, Am. Ceram. Soc., 1998, 81, p 2497-2500Google Scholar
  91. 91.
    R.C. Bradt, D.P.H. Hasselman, and D. Munz, Fracture Mechanics of Ceramics, Vol 12, Composites, and High Temperature Behavior, Springer Science + Business Media New York, Fatigue, 1996Google Scholar
  92. 92.
    R.W. Rice, Grain Size and Porosity Dependence of Ceramic Fracture Energy and Toughness at 22 °C, J. Mater. Sci., 1996, 31(8), p 1969-1983Google Scholar
  93. 93.
    D.L. Zhang, J. Liang, and J. Wu, Processing Ti3Al-SiC Nanocomposites using High Energy Mechanical Milling, Mater. Sci. Eng., A, 2004, 375–377, p 911-916Google Scholar
  94. 94.
    R. Gadow, M.J. Riegert-Escribano, and M. Buchmann, Residual Stress Analysis in Thermally Sprayed Layer Composites, Using the Hole Milling and Drilling Method, J. Therm. Spray Technol., 2005, 14, p 100-108Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Mining and Metallurgical EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Materials Engineering Research CenterMalek Ashtar University of TechnologyTehranIran

Personalised recommendations