Advertisement

Optimization Adhesion in Cold Spraying onto Hard Substrates: A Case Study for Brass Coatings

  • Stephan TheimerEmail author
  • Martin Graunitz
  • Matthias Schulze
  • Frank Gaertner
  • Thomas Klassen
Peer Reviewed
  • 62 Downloads

Abstract

In state-of-the-art manufacturing of sliding bearings, brass components are soldered to respective parts, which is costly and energy intensive. Most bearings contained lead, which has to be omitted due to associated health risks. Cold spraying can be employed as additive manufacturing technique and allows to deposit the requested bearings in desired lead-free layout where needed. Aside from the coating strength and tribological behavior to be met as bearing material, sufficient adhesion of the coating is essential for applications. The present study aims to systematically elucidate the influence of surface roughness on adhesion. The surface roughness was adjusted by varying the grit blasting material, grit size, blast pressure, blast distance and substrate material with the aim to study influences from grit impact conditions, surface topography on particle deformation and bonding in cold spraying. Through systematic tuning of blasting conditions, coating adhesion can be increased by approximately a factor of two, thus meeting the requirements for new lead-free bearings. For reference, nickel bond coats were investigated as alternative method to optimize the adhesion of cold-sprayed brass coatings. The results showed that the respective adhesion strength can exceed the optimized maximum adhesion strength by ideal surface roughness.

Keywords

adhesion bond strength bonding mechanism brass cold spray nickel bond coat 

Notes

Acknowledgments

This research and development project is funded by the German Federal Ministry of Education and Research (BMBF) within the “SME—Innovative: Research for Production” program (Funding Number 02P14K560 – 4) and managed by the Project Management Agency Karlsruhe (PTKA), which is greatly acknowledged. The authors like to thank in alphabetical order Thomas Breckwoldt, Camilla Schulze, Matthias Schulze, Sabine Stein and Uwe Wagener for technical support, as well as Hamid Assadi, Alexander List and Maria Villa Vidaller for fruitful discussions concerning the work of this study. The author also thanks Kerstin Ernst from Putzier Oberflächentechnik GmbH for the supply of HVOF-sprayed nickel specimens and supporting information.

References

  1. 1.
    KMU-innovativ – Innovationen für die Produktion von morgen, Projektportraits der 15. Auswahlrunde mit Laufzeit 2015–2017, http://www.bmbf.de/pub/KMU_inoovativ_15._Runde.pdf. Accessed 24 Jan 18
  2. 2.
    Environment Pollutant Report 2015, Green Cross and Pure Earth (2015)Google Scholar
  3. 3.
    Directive 2011/65/EU of the European Parliament and of the Council (2011)Google Scholar
  4. 4.
    A.P. Alkimov, V.F. Kosarev, N.I. Nesterovich, and A.N. Papyrin, Method of applying coatings, Russian Patent 1,618,778Google Scholar
  5. 5.
    T. Stoltenhoff, C. Borchers, F. Gärtner, and H. Kreye, Microstructures and Key Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200, p 4947-4960CrossRefGoogle Scholar
  6. 6.
    R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8, p 559-564CrossRefGoogle Scholar
  7. 7.
    H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann, K. Binder, F. Gärtner, T. Klassen, and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20, p 1161-1176CrossRefGoogle Scholar
  8. 8.
    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394CrossRefGoogle Scholar
  9. 9.
    T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18, p 794-808CrossRefGoogle Scholar
  10. 10.
    T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742CrossRefGoogle Scholar
  11. 11.
    H. Assadi, H. Kreye, F. Gärtner, and T. Klassen, Cold Spraying: A Material Perspective, Acta Mater., 2016, 116, p 382-407CrossRefGoogle Scholar
  12. 12.
    F. Gärtner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15, p 223-232CrossRefGoogle Scholar
  13. 13.
    T. Klassen, F. Gärtner, H. Assadi, M. Villa-Vidaller, K. Binder, K. Onizawa, A. List, K.-R. Ernst, and S. Krebs, H. Gutzmann, Kinetisches Spritzen zur Funktionalisierung von Oberflächen und für die generative Bauteilfertigung, in Proceedings 33rd Hagener Symposium in der Pulvermetallurgie, Hagen, GER Nov 2014, pp. 97-116Google Scholar
  14. 14.
    Z. Arabgol, M. Villa-Vidaller, H. Assadi, F. Gärtner, and T. Klassen, Influence of Thermal Properties and Temperature of Substrate on the Quality of Cold-Sprayed Deposits, Acta Mater., 2017, 65, p 287-301CrossRefGoogle Scholar
  15. 15.
    J.G. Legoux, E. Irissou, and C. Moreau, Effect of Substrate Temperature of the Formation Mechanism of Cold-Sprayed Aluminium, Zinc and Tin Coating, J. Therm. Spray Technol., 2007, 16, p 619-626CrossRefGoogle Scholar
  16. 16.
    M. Fukumoto, H. Wada, K. Tanabe, M. Yamada, E. Yamaguchi, A. Niwa, Sugimoto, and M. Izawa, Effect of Substrate Temperature on Deposition Behavior of Copper Particles on Substrate Surfaces in Cold Spray Process, Journal Thermal Spray Technology, 2007, 16, p 643-650CrossRefGoogle Scholar
  17. 17.
    S. Theimer, P. Brethack, F. Gärtner, and T. Klassen, Cold gas spraying of lead-free bearing bronzes, in Proceedings ITSC, Düsseldorf, GER, June 2017, pp. 208-213.Google Scholar
  18. 18.
    A. Momber, Blasting Cleaning Technology, Springer, Berlin, 2008, p 7-13Google Scholar
  19. 19.
    S. Yin, Y. Xie, X. Suo, H. Liao, and X. Wang, Interfacial Bonding Features of Ni Coating on Al Substrate with Different Surface Pretreatments in Cold Spray, Mater. Lett., 2015, 138, p 143-147CrossRefGoogle Scholar
  20. 20.
    T. Hussain, D.G. McCartney, P.H. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379CrossRefGoogle Scholar
  21. 21.
    C. Chen, Y. Xie, X. Xie, S. Deng, H. Liao, R. Huang, and Z. Ren, Investigation of particle/substrate bonding between copper powder and different substrate in cold spray, in Proceedings ITSC, Orlando, May 2018, pp. 262-269Google Scholar
  22. 22.
    R.C. Tucker, ASM Handbook, Volume 5A: Thermal Spray Technology, Chapter 2, ASM international, Materials Park, 2013, p 31-90CrossRefGoogle Scholar
  23. 23.
    C. Borchers, F. Gärtner, T. Stoltenhoff, H. Assadi, and H. Kreye, Microstructural and Macroscopic Properties of Cold Sprayed Copper Coatings, J. Appl. Phys., 2003, 93, p 10064-10070CrossRefGoogle Scholar
  24. 24.
    T. Klassen, F. Gärtner, and H. Assadi, Process Science of Cold Spray Chapter 2: High Pressure Cold Spray—Principles and Applications, ASM International, Materials Park, 2016, p 17-65Google Scholar
  25. 25.
    K. Bobzin, M. Öte, T.F. Linke, J. Sommer, and X. Liao, Influence of Process Parameter on Grit Blasting as a Pretreatment Process for Thermal Spraying, J. Therm. Spray Technol., 2016, 25, p 3-8CrossRefGoogle Scholar
  26. 26.
    Q. Blochet, F. Delloro, F. N’Guyen, D. Jeulin, F. Borit, and M. Jeandin, Effect of the Cold-Sprayed Aluminium Coating-Substrate Interface Morphology on Bond Strength for Aircraft Repair Application, J. Therm. Spray Technol., 2017, 26, p 671-686CrossRefGoogle Scholar
  27. 27.
    H. Begg, M. Riley, and H. De Villiers Lovelock, Mechanization of The Grit Blasting Process for Thermal Spray Coating Applications: A Parameter Study, J. Therm. Spray Technol., 2016, 25, p 12-20CrossRefGoogle Scholar
  28. 28.
    S. Theimer, M. Graunitz, F. Gärtner, and T. Klassen, Adhesion of cold sprayed brass coatings for lead-free bearings, in Proceedings ITSC, Orlando, May 2018, pp. 568-573.Google Scholar
  29. 29.
    C.R.C. Lima and J.M. Guilemany, Adhesion Improvements of Thermal Barrier Coatings with HVOF Thermally Sprayed Bond Coats, Surf. Coat. Technol., 2007, 201, p 4694-4701CrossRefGoogle Scholar
  30. 30.
    P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals—From Powder to Part, Springer, New York, 2014, p 356-368CrossRefGoogle Scholar
  31. 31.
    L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, Hoboken, 1995, p 403-411Google Scholar
  32. 32.
    M. Homann and N. Ludwig, Equipment for the manufacture of powders of metals, German Patent DE 4102 101 A1.Google Scholar
  33. 33.
    DIN EN ISO 4287:2010-07 Geometrical Product Specifications (GPS)—Surface texture: Profile method—Terms, definitions and surface texture parameters (ISO 4287:1997); German version EN ISO 4287:1998).Google Scholar
  34. 34.
    I.M. Hutchings, Tribology—Friction and Wear of Engineering Materials, CRC Press, London, 1992, p 171-178Google Scholar
  35. 35.
    D.A. Hays, Role of Electrostatics in Adhesion Chapter 8: Fundamentals of Adhesion, Springer, Boston, 1991, p 249-278Google Scholar
  36. 36.
    F.R. De Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen, Cohesion in Metals—Transition Metal Alloys, North Holland, Amsterdam, 1988, p 260Google Scholar
  37. 37.
    Z. Arabgol, H. Assadi, T. Schmidt, F. Gärtner, and T. Klassen, Analysis of Thermal History and Residual Stress in Cold-Sprayed Coatings, J. Therm. Spray Technol., 2014, 23, p 84-90CrossRefGoogle Scholar
  38. 38.
    W. Li, K. Yang, D. Zhang, and X. Zhou, Residual Stress Analysis Of Cold-Sprayed Copper Coatings by Numerical Simulation, J. Therm. Spray Technol., 2016, 25, p 131-142CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Stephan Theimer
    • 1
  • Martin Graunitz
    • 1
  • Matthias Schulze
    • 1
  • Frank Gaertner
    • 1
  • Thomas Klassen
    • 1
  1. 1.Department of Mechanical EngineeringHelmut-Schmidt-Universitat/Universitat der Bundeswehr HamburgHamburgGermany

Personalised recommendations