Advertisement

Influence of Powder Size on the Corrosion and Wear Behavior of HVAF-Sprayed Fe-Based Coatings

  • K. Bobzin
  • M. Öte
  • M. A. Knoch
  • J. SommerEmail author
Peer Reviewed
  • 52 Downloads

Abstract

The goal of this study is to investigate the influence of the powder size on the coating properties and to gain insights into the underlying mechanisms. Therefore, FeCrB/WC-Co coatings were produced by HVAF spraying using different powder sizes. The used FeCrB/WC-Co feedstock materials exhibit an identical chemical composition with varying powder sizes of − 45 + 11 (Bobzin et al. (in Proceedings of ITSC—international thermal spray conference and exposition, Düsseldorf, pp. 339–345, 2017. ISBN: 978-3-96144-000-9), − 32 + 11 (Bobzin et al. in Proceedings of 20. WTK—Werkstofftechnisches Kolloquium, Chemnitz, 2018. ISBN: 978-3-00-058901-0) and − 20 + 3 µm. These coatings were subsequently analyzed with regard to their microstructure and phase composition, as well as their wear and corrosion behavior. All HVAF-sprayed FeCrB/WC-Co coatings exhibited a very dense microstructure. It was observed that coatings, which were produced with a finer powder size and identical chemical composition, showed reduced crack formation in the coating at high powder feed rates and lower current densities at high polarizations. Furthermore, the presented HVAF-sprayed FeCrB/WC-Co coatings exhibited an increased sliding wear and corrosion resistance compared to a sealed wire-arc-sprayed reference coating. The investigation also revealed that the powder size of the FeCrB/WC-Co feedstock material influences the microstructure and the phase composition of the resulting coating. It is assumed that the finer powder size of the HVAF-sprayed FeCrB/WC-Co coatings results in partly amorphous coatings, which might improve the corrosion resistance.

Keywords

applications corrosion protection feedstock HVAF iron alloys paper industry processing wear-resistant coatings 

Notes

Acknowledgments

This work based on the DFG project BO 1979/45-1 “Resource efficient production of novel Fe-based coatings for large-area applications by AC-HVAF coating process.” The authors gratefully acknowledge the financial support of the German Research Foundation (DFG).

References

  1. 1.
    A. Verstak and V. Baranovski, AC-HVAF Sprayed Tungsten Carbide: Properties and Applications, in Proceedings of ITSC—International Thermal Spray Conference & Exposition, May 2006, Seattle, pp. 643/648Google Scholar
  2. 2.
    A. Salman, B. Gabbitas, P. Cao, and D. Zhang, Tribological Properties of Ti(AlO/Al2O3) Composite Coating by Thermal Spraying, Int. J. Mod. Phys. B, 2009, 23(6 & 7), p 1407-1412.  https://doi.org/10.1142/S0217979209061019 CrossRefGoogle Scholar
  3. 3.
    Q. Wang, S. Zhang, Y. Cheng, and J. Xiang, Wear and Corrosion Performance of WC-10Co4Cr Coatings Deposited by Different HVOF and HVAF Spraying Processes, Surf. Coat. Technol., 2013, 218(I), p 117-123.  https://doi.org/10.1016/j.surfcoat.2012.12.041 CrossRefGoogle Scholar
  4. 4.
    R.Q. Guo, C. Zhang, Q. Chen, and Y. Yang, Study of Structure and Corrosion Resistance of Fe-Based Amorphous Coatings Prepared by HVAF and HVOF, Corros. Sci., 2011, 53(7), 2351-2356.  https://doi.org/10.1016/j.corsci.2010.12.022 CrossRefGoogle Scholar
  5. 5.
    G. Bolelli, L.M. Berger, T. Boerner, and H. Koivuluoto, Tribology of HVOF- and HVAF-Sprayed WC-10Co4Cr Hardmetal Coatings: A Comparative Assessment, Surf. Coat. Technol., 2015, 265, 125-144.  https://doi.org/10.1016/j.surfcoat.2015.01.048 CrossRefGoogle Scholar
  6. 6.
    I. Hulka, V.A. Serban, K. Niemi, and P. Vuoristo, Comparison of Structure and Wear Properties of Fine-Structured WC-CoCr Coatings Deposited by HVOF and HVAF Spraying Processes, Sol. St. Phen., 2017, 188, p 422-427.  https://doi.org/10.4028/www.scientific.net/SSP.188.422 CrossRefGoogle Scholar
  7. 7.
    G. Bolelli, I. Hulka, H. Koivuluoto, and L. Lusvarghi, Properties of WC-FeCrAl Coatings Manufactured by Different High Velocity Thermal Spray Processes, Surf. Coat. Technol., 2014, 247, p 74-89.  https://doi.org/10.1016/j.surfcoat.2014.03.021 CrossRefGoogle Scholar
  8. 8.
    S. Hashmi, Comprehensive Materials Processing: Thermal Spray Coating Process, (Newnes 2014), pp. 233-266. ISBN: 978-0-0809-6532-1.Google Scholar
  9. 9.
    K. Bobzin, M. Öte, T.F. Linke, and K.A. Malik, Wear and Corrosion Resistance of Fe-Based Coatings Reinforced by TiC Particles for Application in Hydraulic Systems, J. Therm. Spray Technol., 2016, 25(1-2), p 365-374.  https://doi.org/10.1007/s11666-015-0316-1 CrossRefGoogle Scholar
  10. 10.
    K. Bobzin, L. Zhao, M. Öte, and T. Königstein, Novel Fe-Based Wear and Corrosion Resistant Coatings By Three-Cathode Plasma Technology, Surf. Coat. Technol., 2017, 318, p 288-292.  https://doi.org/10.1016/j.surfcoat.2016.08.041 CrossRefGoogle Scholar
  11. 11.
    A. Schwenk, HVOF-K2-Spritzen von Eisenbasislegierungen für Anwendungen in der Druckindustrie, in Proceedings of. 8. HVOF-Kolloquium, Erding, October 2009Google Scholar
  12. 12.
    A. Osamanda, A. Battenbough, and A. Staines, Fe-Cr and Fe-Cr-Ni Based HVOF Coating Systems Customised for Wear and Corrosion Protection, Thermal Spray Bull., 2012, 64(2), p 117-122Google Scholar
  13. 13.
    P. Vuoristo and P. Nylén, Industrial and Research Activities in Thermal Spray Technology in the Nordic Region of Europe, J. Therm. Spray Technol., 2007, 16, p 466-471.  https://doi.org/10.1007/s11666-007-9136-2 CrossRefGoogle Scholar
  14. 14.
    H.S. Jazi, Thermal Sprayed Coatings Used Against Corrosion and Corrosive Wear. IntechOpen (2012), ISBN: 978-953-51-0349-3Google Scholar
  15. 15.
    C. Perdikaris, Methods of Coating Yankee Dryer Drums, E.U. Patent 1,158,066A1Google Scholar
  16. 16.
    J. Tenkula, B. Hellman, and J. Majava, Yankee Clyinder with Plasma Sprayed Carbide Coating, U.S. Patent 5,123,152A.Google Scholar
  17. 17.
    K. Bobzin, M. Öte, M.A. Knoch, and J. Sommer, Influence of Powder Feed Rate on Corrosion and Wear Properties of Fe-Based HVAF Coatings, in Proceedings of 20. WTK—Werkstofftechnisches Kolloquium, Chemnitz, March 2018. ISBN: 978-3-00-058901-0Google Scholar
  18. 18.
    N. Espallargas, Future Development of Thermal Spray Coatings. Woodhead Publishing (2015), ISBN: 978-0-85709-769-9Google Scholar
  19. 19.
    P. Vuoristo, Thermal Spray Coating Processes, Comprehensive Material Processing 1st Edition, Elsevier (Amsterdam, 2014), pp. 229-276Google Scholar
  20. 20.
    G.E. Totten, Friction, Lubrication, and Wear Technology. ASM Handbook Vol. 18Google Scholar
  21. 21.
    K. Bobzin, M. Öte, M.A. Knoch, and J. Sommer, Development of HVAF-Sprayed Novel Fe-Based Coatings for Large Area Applications, in Proceedings of ITSC—International Thermal Spray Conference & Exposition, Düsseldorf, June 2017, pp. 339-345. ISBN: 978-3-96144-000-9Google Scholar
  22. 22.
    J.A. Picas, A. Forn, and G. Matthäus, HVOF Coatings as an Alternative to Hard Chrome for Pistons and Valves, Wear, 2006, 261, p 477-484.  https://doi.org/10.1016/j.wear.2005.12.005 CrossRefGoogle Scholar
  23. 23.
    T. Warda, Thermisch gespritzt eisenbasierte Feinstpulverschichtsysteme für Verschleiß- und Korrosionsschutzanwendungen, Shaker Verlag (Aachen, 2013). ISBN: 978-3-8440-1833-2Google Scholar
  24. 24.
    E. Sadeghimeresht, N. Markocsan, and P. Nylén, Microstructural Characteristics and Corrosion Behavior of HVAF- and HVOF-Sprayed Fe-Based Coatings, Surf. Coat. Technol., 2017, 318, p 365-373.  https://doi.org/10.1016/j.surfcoat.2016.11.088 CrossRefGoogle Scholar
  25. 25.
    J. Nebel, W. Tillmann, W. Piotrowski, and I.A. Laemmerhirt, Influence of Fine Powder Feedstock (− 10 +2 µm) on the HVOF Spraying Characteristics, Coating Morphology and Properties of WC-CoCr 86-10-4, in Proceedings of ITSC—Inernational Thermal Spray Conference & Exposition, Houston, TX, May 2012, pp. 403-408. ISBN: 978-1-62708-010-1Google Scholar
  26. 26.
    W. Tillmann, E. Vogli, I. Baumann, G. Matthaeus, and T. Ostrowski, Influence on the HVOF Gas Composition on the Thermal Spraying of WC-Co Submicron Powders (-8 +1 µm) to Produce Superfine Structured Cermet Coatings, J. Therm. Spray Technol., 2008, 14(3), p 405-413.  https://doi.org/10.1007/s11666-008-9234-9 CrossRefGoogle Scholar
  27. 27.
    A. Milanti, V. Matikainen, G. Bolelli, H. Koivuluoto, L. Lusvarghi, and P. Vuoristo, Microstructure and Sliding Wear Behavior of Fe-Based Coatings Manufactured with HVOF and HVAF Thermal Spray Processes, J. Therm. Spray Technol., 2016, 25(5), p 1040-1055.  https://doi.org/10.1007/s11666-016-0410-z CrossRefGoogle Scholar
  28. 28.
    L. Milanti, V. Matikainen, H. Koivuluoto, G. Bolelli, L. Lusvarghi, and P. Vuoristo, Effect of Spraying Parameters on the Microstructural and Corrosion Properties of HVAF-Sprayed Fe-Cr-Ni-B-C Coatings, Surf. Coat. Technol., 2015, 277, p 81-90.  https://doi.org/10.1016/j.surfcoat.2015.07.018 CrossRefGoogle Scholar
  29. 29.
    E. Sadeghimeresht, N. Markoscan, and P. Nylén, A Comparative Study of Corrosion Resistance for HVAF-Sprayed Fe- and Co-Based Coatings, Coatings, 2016,  https://doi.org/10.3390/coatings6020016 CrossRefGoogle Scholar
  30. 30.
    G. Bolelli, T. Börner, A. Milanti, L. Lusvarghi, J. Laurila, H. Koivuluoto, K. Niemi, and P. Vuoristo, Tribological Behavior of HVOF- and HVAF-Sprayed Composite Coatings Based on Fe-Alloy + WC–12% Co, Surf. Coat. Technol., 2014, 248, p 104-112.  https://doi.org/10.1016/j.surfcoat.2014.03.037 CrossRefGoogle Scholar
  31. 31.
    A. Milanti, H. Koivuluoto, and P. Vuoristo, Influence of the Spray Gun Type on Microstructure and Properties of HVAF Sprayed Fe-Based Corrosion Resistant Coatings, J. Therm. Spray Technol., 2015, 24, p 1312-1322.  https://doi.org/10.1007/s11666-015-0298-z1059-9630/$19.00 CrossRefGoogle Scholar
  32. 32.
    M. Miller and P. Liaw, Bulk Metallic Glasses, Springer, Berlin, 2008, ISBN 978-0-387-48920-9Google Scholar
  33. 33.
    J. Liu, R.E. Saw, and Y.-H. Kian, Calculation of Effective Penetration Depth in X-Ray Diffraction for Pharmaceutical Solids, J. Pharm. Sci., 2010, 99(9), p 3807-3814.  https://doi.org/10.1002/jps.22202 CrossRefGoogle Scholar
  34. 34.
    V. Hauk and H. Behnken, Structural and Residual Stress Analysis by Nondestructive Methods, Elsevier, Amsterdam, 2006, ISBN 0444824766Google Scholar
  35. 35.
    J.H. Hubbell and S.M. Seltzer, Standard Reference Database 126: X-Ray Mass Attenuation Coefficients. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, Stand vom 07.2004. U.S. Department of Commerce: https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients. Accessed 12 Sept 2018
  36. 36.
    L. Liu and C. Zhang, Fe-Based Amorphous Coatings: Structures and Properties, Thin Solid Films, 2014, 561, p 70-86.  https://doi.org/10.1016/j.tsf.2013.08.029 CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Surface Engineering InstituteRWTH Aachen UniversityAachenGermany

Personalised recommendations