Journal of Thermal Spray Technology

, Volume 28, Issue 1–2, pp 53–62 | Cite as

Plasma Spraying of Dense Ceramic Coating with Fully Bonded Lamellae Through Materials Design Based on the Critical Bonding Temperature Concept

  • Chang-Jiu LiEmail author
  • Qi-Lan Zhang
  • Shu-Wei Yao
  • Guan-Jun Yang
  • Cheng-Xin Li
Peer Reviewed


It is usually difficult to deposit a dense ceramic coating with fully bonded splats by plasma spraying at a room temperature. Following the recent research progress on the splat interface bonding formation, it was found that there is a well-defined relationship between the critical bonding temperature and the melting point of spray material. Thus, it can be proposed to control the lamellar bonding through the deposition temperature. In this study, to examine the feasibility of the bonding formation theory, a novel approach to the development of ceramic coating with dense microstructure by plasma spraying through materials design with a low melting point is proposed. Potassium titanate K2Ti6O13 was selected as a typical ceramic material of a relatively low melting point for plasma spraying deposition of dense coating with well-bonded splats. Experiment was conducted by using K2Ti6O13 for both splat and coating deposition. Results show that the splat is fully bonded with a ceramic substrate at room temperature, and the K2Ti6O13 coating presents a dense microstructure and a fracture surface morphology similar to sintered bulk ceramic, revealing excellent interlamellar bonding formation. Moreover, both the hardness test and erosion test at 90° further confirmed the formation of the isotropic ceramic coating with fully bonded lamellae.


dense ceramic coatings erosion behavior K2Ti6O13 lamellae bonding plasma spraying 



The present project is financially supported by National Science Foundation (No. 51171144) and the National Basic Research Program of China (No. 2012CB625104).


  1. 1.
    A. Vardelle, C. Moreau, J. Akedo et al., The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440CrossRefGoogle Scholar
  2. 2.
    A. McWilliams, High-Performance Ceramic Coatings: Markets and Technologies, BBC Research, 2016Google Scholar
  3. 3.
    J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Materials Park, 2004Google Scholar
  4. 4.
    L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, Chichester, 1995Google Scholar
  5. 5.
    C.-J. Li and A. Ohmori, Relationship Between the Structure and Properties of Thermally Sprayed Deposits, J. Therm. Spray Technol., 2002, 11, p 365-374CrossRefGoogle Scholar
  6. 6.
    R. McPherson and B.V. Shafer, Interlamellar Contact Within Plasma-Sprayed Coatings, Thin Solid Films, 1982, 97, p 201-204CrossRefGoogle Scholar
  7. 7.
    A. Ohmori and C.-J. Li, Quantitative Characterization of the Structure of Plasma Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201, p 241-252CrossRefGoogle Scholar
  8. 8.
    S. Kuroda, T. Dendo, and S. Kitahara, Quenching Stress in Plasma Sprayed Coatings and Its Correlation with the Deposit Microstructure, J. Therm. Spray Technol., 1995, 4(1), p 75-84CrossRefGoogle Scholar
  9. 9.
    S. Boire-Lavigne, C. Moreau, and R.G. Saint-Jacques, The Relationship Between the Microstructure and Thermal Diffusivity of Plasma-Sprayed Tungsten Coatings, J. Therm. Spray Technol., 1995, 4(3), p 261-267CrossRefGoogle Scholar
  10. 10.
    L. Chen, G.J. Yang, C.-X. Li, and C.-J. Li, Edge Effect on Crack Patterns in Thermally Sprayed Ceramic Splats, J. Therm. Spray Technol., 2017, 26(3), p 302-314CrossRefGoogle Scholar
  11. 11.
    S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coating, Thin Solid Films, 1991, 200, p 49-66CrossRefGoogle Scholar
  12. 12.
    Y. Arata, A. Ohmori, and C.-J. Li, Electrochemical Method to Evaluate the Connected Porosity in Ceramic Coatings, Thin Solid Films, 1988, 156, p 315-325CrossRefGoogle Scholar
  13. 13.
    M. Vippola, J. Vuorinen, P. Vuoristo, T. Lepisto, and T. Mantyla, Thermal Analysis of Plasma Sprayed Oxide Coatings Sealed with Aluminium Phosphate, J. Eur. Ceram. Soc., 2002, 22, p 1937-1946CrossRefGoogle Scholar
  14. 14.
    C.-J. Li, X.-J. Ning, and C.-X. Li, Effect of Densification Process on the Properties of Plasma-Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cell, Surf. Coat. Technol., 2005, 190, p 60-64CrossRefGoogle Scholar
  15. 15.
    R. McPherson, A Model for the Thermal Conductivity of Plasma-Sprayed Ceramic Coatings, Thin Solid Films, 1984, 112, p 89-95CrossRefGoogle Scholar
  16. 16.
    C.-J. Li, W.-Z. Wang, and Y. He, Dependency of Fracture Toughness of Plasma-Spray Al2O3 Coatings on Lamellar Structure, J. Therm. Spray Technol., 2004, 13(3), p 425-443CrossRefGoogle Scholar
  17. 17.
    C.-J. Li, G.J. Yang, and C.X. Li, Development of Particle Interface Bonding in Thermal Spray Coatings: A Review, J. Therm. Spray Technol., 2013, 22(2-3), p 192-206CrossRefGoogle Scholar
  18. 18.
    G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, and E. Lara-Curzio, Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging, J. Am. Ceram. Soc., 2014, 97(9), p 2736-2744CrossRefGoogle Scholar
  19. 19.
    C.-J. Li, Y. Li, G.-J. Yang, and C.-X. Li, A Novel Plasma-Sprayed Durable Thermal Barrier Coating with the Well-Bonded YSZ Interlayer Between Porous YSZ and Bond Coat, J. Therm. Spray Technol., 2012, 21, p 383-390CrossRefGoogle Scholar
  20. 20.
    V. Viswanathan, G. Dwivedi, and S. Sampath, Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance, J. Am. Ceram. Soc., 2014, 97(9), p 2770-2778CrossRefGoogle Scholar
  21. 21.
    G. Dwivedi, K. Flynn, M. Resnick, S. Sampath, and A. Gouldstone, Bioinspired Hybrid Materials from Spray-Formed Ceramic Templates, Adv. Mater., 2015, 27(19), p 3073-3078CrossRefGoogle Scholar
  22. 22.
    J. Rong, K. Yang, Y. Zhuang, J. Ni, H. Zhao, S. Tao, X. Zhong, and C. Ding, Phase and Microstructure Evolution and Toughening Mechanism of a Hierarchical Architectured Al2O3-Y2O3 Coating Under High Temperature, J. Therm. Spray Technnol., 2018, 27, p 358-370CrossRefGoogle Scholar
  23. 23.
    Y.-Z. Xing, C.-J. Li, C.-X. Li, and G.-J. Yang, Relationship Between the Interlamellar Bonding and Properties of Plasma-Sprayed Y2O3-ZrO2 Coatings, Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., ASM International, Materials Park, 2009, p 939-944Google Scholar
  24. 24.
    H.B. Guo, R. Vaßen, and D. Stöver, Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density, Surf. Coat. Technol., 2004, 186, p 353-363CrossRefGoogle Scholar
  25. 25.
    Y.Z. Xing, C.J. Li, Q. Zhang, C.X. Li, and G.J. Yang, Influence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia Deposits, J. Am. Ceram. Soc., 2008, 91(12), p 3931-3936CrossRefGoogle Scholar
  26. 26.
    G.J. Yang, C.X. Li, S. Hao, Y.Z. Xing, Y.Z. Xing, and C.-J. Li, Critical Bonding Temperature for the Splat Bonding Formation During Plasma Spraying of Ceramic Materials, Surf. Coat. Technol., 2013, 235, p 841-847CrossRefGoogle Scholar
  27. 27.
    S.W. Yao, C.-J. Li, J.J. Tian, G.J. Yang, and C.X. Li, Conditions and Mechanisms for the Bonding of a Molten Ceramic Droplet to a Substrate After High-Speed Impact, Acta Mater., 2016, 119, p 9-25CrossRefGoogle Scholar
  28. 28.
    R. Murakami and K. Matsui, Evaluation of Mechanical and Wear Properties of Potassium Acid Titanate Whisker-Reinforced Copper Matrix Composites Formed by Hot Isostatic Pressing, Wear, 1996, 201, p 193-198CrossRefGoogle Scholar
  29. 29.
    D. Yu, J. Wu, L. Zhou, D. Xie, and S. Wu, The Dielectric and Mechanical Properties of a Potassium-Titanate-Whisker-Reinforced PP/PA Blend, Compos. Sci. Technol., 2000, 60, p 499-508CrossRefGoogle Scholar
  30. 30.
    Z. Lu, Y. Liu, B. Liu, and M. Liu, Friction and Wear Behavior of Hydroxyapatite Based Composite Ceramics Reinforced with Fibers, Mater. Des., 2012, 39, p 444-449CrossRefGoogle Scholar
  31. 31.
    Y. Qi, Y. He, C. Cui, S. Liu, and H. Wang, Fabrication and Biocompatibility In Vitro of Potassium Titatnate Biological Thin/Titanium Alloy Biological Composite, Front. Mater. Sci., 2007, 1, p 252-257CrossRefGoogle Scholar
  32. 32.
    H. Yoshida, M. Takeuchi, M. Sato, L. Zhang, T. Teshima, and M.G. Chaskar, Possium Hexatitanate Photocatalysts Prepared by Flux Method for Water Splitting, Catal. Today, 2014, 232, p 158-164CrossRefGoogle Scholar
  33. 33.
    A.S. Varezhnikov, F.S. Fedorov, I.N. Burmistrov, I.A. Plugin, M. Sommer, A.V. Lashkov, A.V. Gorokhovsky, A.G. Nasibulin, D.V. Kuznetsov, M.V. Gorshenkov, and V.V. Sysoev, The Room-Temperature Chemiresistive Properties of Potassium Titanate Whiskers Versus Organic Vapor, Nanomaterials, 2017, 7, p 455-465CrossRefGoogle Scholar
  34. 34.
    R. Dominiko, L. Dupond, M. Gabersaek, J. Jamnik, and E. Baudrin, Alkali Hexatitanate-A2Ti6O13 (A = Na, K) as Host Structure for Reversible Lithium Insertion, J. Power Sources, 2007, 174, p 1172-1176CrossRefGoogle Scholar
  35. 35.
    X. Cheng, Q. Dong, Z. Li, X. Guo, and W. Duan, Influence of Potassium Titanate Whisker on the Mechanical Properties and Microstructure of Calcium Aluminate Cement for In Situ Combustion, J. Adhes. Sci. Technol., 2018, 32, p 343-358CrossRefGoogle Scholar
  36. 36.
    C.J. Li and J.L. Li, Evaporated-Gas-Induced Splashing Model for Splat Formation during Plasma Spraying, Surf. Coat. Technol., 2004, 184(1), p 13-23CrossRefGoogle Scholar
  37. 37.
    S.W. Yao, G.J. Yang, C.X. Li, and C.J. Li, Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature, J. Therm. Spray Technol., 2018, 27(1-2), p 25-34CrossRefGoogle Scholar
  38. 38.
    P. Ponce-Pena, M.A. Gozalez-Lozano, M.A. Escobedo-Bretado, P. de Lira-Gomez, E. Garcia-Sanchez, E. Rivera, and L. Alexandrova, Synthesis and characterization of Potassium Hexatitanate Using Boric Acid as the Flux, Ceram. Int., 2015, 41, p 10051-10056CrossRefGoogle Scholar
  39. 39.
    L.S. Wang, S.L. Zhang, T. Liu, C.J. Li, C.X. Li, and G.J. Yang, Dominant Effect of Particle Size on the CeO2 Preferential Evaporation During Plasma Spraying of La2Ce2O7, J. Eur. Ceram. Soc., 2017, 37(4), p 1577-1585CrossRefGoogle Scholar
  40. 40.
    S. Zhang, T. Liu, C. Li, S. Yao, and C. Li, Atmospheric Plasma-Sprayed La0.8Sr0.2Ga0.8Mg0.2O3 Electrolyte Membranes for Intermediate-Temperature Solid Oxide Fuel Cells, J. Mater. Chem. A, 2015, 3(14), p 7535-7553CrossRefGoogle Scholar
  41. 41.
    S.H. Leigh, C.K. Lin, and C.C. Berndt, Elastic Response of Thermal Spray Deposits Under Indentation Tests, J. Am. Ceram. Soc., 1997, 80, p 2093-2099CrossRefGoogle Scholar
  42. 42.
    F. Kroupa, Nonlinear Behavior in Compression and Tension of Thermally Sprayed Ceramic Coatings, J. Therm. Spray Technol., 2007, 16(1), p 84-95CrossRefGoogle Scholar
  43. 43.
    G.-R. Li, H. Xie, G.-J. Yang, G. Liu, C.-X. Li, and C.-J. Li, A Comprehensive Sintering Mechanism for TBCs-Part I: An Overall Evolution with Two-Stage Kinetics, J. Am. Ceram. Soc., 2017, 100(5), p 2176-2189CrossRefGoogle Scholar
  44. 44.
    C.-J. Li, G.-J. Yang, and A. Ohmori, Relationship Between Particle Erosion and Lamellar Microstructure for Plasma Sprayed Alumina Coatings, Wear, 2006, 260(11-12), p 1166-1172CrossRefGoogle Scholar
  45. 45.
    A. Kobayashi, Enhancement of Functional Ceramic Coating Performance by Gas Tunnel Type Plasma Spraying, J. Therm. Spray Technol., 2016, 25(3), p 411-418CrossRefGoogle Scholar
  46. 46.
    R.J. Damani and P. Makroczy, Heat Treatment Induced Phase and Microstructural Development in Bulk Plasma Sprayed Alumina, J. Eur. Ceram. Soc., 2000, 20(7), p 867-888CrossRefGoogle Scholar
  47. 47.
    T. Chraska, Z. Pala, R. Musalek, J. Medricky, and M. Vilemova, Post-Treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering, J. Therm. Spray Technol., 2015, 24(4), p 637-643CrossRefGoogle Scholar
  48. 48.
    A. Ohmori, C.-J. Li, and Y. Arata, Influence of Plasma Spray Conditions on the Structure of Al2O3 Coatings, Trans. Jpn. Weld. Res. Inst., 1990, 19, p 259-270Google Scholar
  49. 49.
    M. Vardelle, A. Vardelle, and P. Fauchais, Study of Trajectories and Temperatures of Powders in a D.C. Plasma Jet—Correlation with Alumina Sprayed Coatings. Proceedings of the 10th International Thermal Spraying Conference, Essen, May 1983, German Welding Society, 1983, p 88-92Google Scholar
  50. 50.
    L.-M. Martinez and C. Angell, A Thermodynamic Connection to the Fragility of Glass-Forming Liquids, Nature, 2001, 410, p 663-667CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Chang-Jiu Li
    • 1
    Email author
  • Qi-Lan Zhang
    • 1
  • Shu-Wei Yao
    • 1
  • Guan-Jun Yang
    • 1
  • Cheng-Xin Li
    • 1
  1. 1.State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations