Journal of Thermal Spray Technology

, Volume 28, Issue 1–2, pp 242–254 | Cite as

Fabrication of Superhydrophobic Ceramic Coatings via Solution Precursor Plasma Spray Under Atmospheric and Low-Pressure Conditions

  • Pengyun XuEmail author
  • Thomas W. Coyle
  • Larry Pershin
  • Javad Mostaghimi
Peer Reviewed


The plasma jet in the vacuum plasma spray process presents characteristics such as supersonic flow, expanded jet dimensions, and a smaller decay rate for jet velocity and temperature that are distinctly different from those of atmospheric plasma spray. In this work, a solution precursor vacuum plasma spray (SPVPS) process is described, which combines vacuum plasma spray with solution precursor as the feedstock. The deposition of superhydrophobic ceramic coatings via the SPVPS process is explored. Yb2O3 coatings are deposited by a radial injection of Yb(NO3)3 solution in the anode of an F4-VB torch operating under a pressure of 150-250 mbar. Coatings with different wetting behaviors were deposited by manipulating the process parameters of the SPVPS process. Solution precursor atmospheric plasma spray (SPAPS) is also applied to deposit superhydrophobic Yb2O3 coatings for comparison with the SPVPS process. The wetting behaviors of the coatings are characterized by water contact angle measurement, water roll-off test, and dynamic water impact test. The formation of different coating microstructures was explained via the different plasma jet characteristics, interactions of solution droplets and plasma, and droplets motions upon the impact on surface. The different wetting behaviors of coatings were correlated with the coating surface structures and topographies.


coating microstructures solution precursor vacuum plasma spray superhydrophobic ceramic coatings wetting behaviors 



The work is supported by the China Scholarship Council, Ontario Research Fund and NSERC Discovery Grants Program [Grant No. RGPIN-2015-06377 (TWC)].


  1. 1.
    M.F. Smith, A.C. Hall, J.D. Fleetwood, and P. Meyer, Very Low Pressure Plasma Spray—A Review of an Emerging Technology in the Thermal Spray Community, Coatings, 2011, 1(2), p 117-132CrossRefGoogle Scholar
  2. 2.
    K. Von Niessen, M. Gindrat, and A. Refke, Vapor Phase Deposition Using Plasma Spray-PVD™, J. Therm. Spray Technol., 2010, 19(1–2), p 502-509CrossRefGoogle Scholar
  3. 3.
    H.S. Kim, B.G. Hong, and S.Y. Moon, Thick Tungsten Layer Coating on Ferritic-Martensitic Steel without Interlayer Using a DC Vacuum Plasma Spray and a RF Low Pressure Plasma Spray Method, Thin Solid Films, 2017, 623, p 59-64CrossRefGoogle Scholar
  4. 4.
    G. Mauer, M. Jarligo, S. Rezanka, A. Hospach, and R. Vaßen, Novel Opportunities for Thermal Spray by PS-PVD, Surf. Coat. Technol., 2015, 268, p 52-57CrossRefGoogle Scholar
  5. 5.
    A. Hospach, G. Mauer, R. Vaßen, and D. Stöver, Characteristics of Ceramic Coatings Made by Thin Film Low Pressure Plasma Spraying (LPPS-TF), J. Therm. Spray Technol., 2012, 21(3-4), p 435-440CrossRefGoogle Scholar
  6. 6.
    R. Bolot, D. Sokolov, D. Klein, and C. Coddet, Nozzle Developments for Thermal Spray at Very Low Pressure, J. Therm. Spray Technol., 2006, 15(4), p 827-833CrossRefGoogle Scholar
  7. 7.
    S. Basu, E.H. Jordan, and B.M. Cetegen, Fluid Mechanics and Heat Transfer of Liquid Precursor Droplets Injected into High-Temperature Plasmas, J. Therm. Spray Technol., 2008, 17(1), p 60-72CrossRefGoogle Scholar
  8. 8.
    M. Gell, E.H. Jordan, M. Teicholz, B.M. Cetegen, N.P. Padture, L. Xie, D. Chen, X. Ma, and J. Roth, Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2008, 17(1), p 124-135CrossRefGoogle Scholar
  9. 9.
    F. Rousseau, S. Awamat, D. Morvan, J. Amouroux, and R. Mevrel, Deposition of Thick Oxide Layers from Solutions in a Low Pressure Plasma Reactor, Surf. Coat. Technol., 2007, 202(4–7), p 714-718CrossRefGoogle Scholar
  10. 10.
    L. Jia and F. Gitzhofer, Induction Plasma Synthesis of Nano-structured SOFCs Electrolyte Using Solution and Suspension Plasma Spraying: A Comparative Study, J. Therm. Spray Technol., 2010, 19(3), p 566-574CrossRefGoogle Scholar
  11. 11.
    F. Rousseau, C. Fourmond, F. Prima, M.V. Serif, O. Lavigne, D. Morvan, and P. Chereau, Deposition of Thick and 50% Porous YpSZ Layer by Spraying Nitrate Solution in a Low Pressure Plasma Reactor, Surf. Coat. Technol., 2011, 206(7), p 1621-1627CrossRefGoogle Scholar
  12. 12.
    J.L. Dorier, P. Guittienne, C. Hollenstein, M. Gindrat, and A. Refke, Mechanisms of Films and Coatings Formation from Gaseous and Liquid Precursors with Low Pressure Plasma Spray Equipment, Surf. Coat. Technol., 2009, 203(15), p 2125-2130CrossRefGoogle Scholar
  13. 13.
    M. Gindrat, H.M. Höhle, K. von Niessen, P. Guittienne, D. Grange, and C. Hollenstein, Plasma Spray-CVD: A New Thermal Spray Process to Produce Thin Films from Liquid or Gaseous Precursors, J. Therm. Spray Technol., 2011, 20(4), p 882-887CrossRefGoogle Scholar
  14. 14.
    M. Ma and R.M. Hill, Superhydrophobic Surfaces, Curr. Opin. Colloid Interface Sci., 2006, 11(4), p 193-202CrossRefGoogle Scholar
  15. 15.
    E. Celia, T. Darmanin, E.T. de Givenchy, S. Amigoni, and F. Guittard, Recent Advances in Designing Superhydrophobic Surfaces, J. Colloid Interface Sci., 2013, 402, p 1-18CrossRefGoogle Scholar
  16. 16.
    G. Azimi, R. Dhiman, H.M. Kwon, A.T. Paxson, and K.K. Varanasi, Hydrophobicity of Rare-earth Oxide Ceramics, Nat. Mater., 2013, 12(4), p 315-320CrossRefGoogle Scholar
  17. 17.
    D.J. Preston, N. Miljkovic, J. Sack, R. Enright, J. Queeney, and E.N. Wang, Effect of Hydrocarbon Adsorption on the Wettability of Rare Earth Oxide Ceramics, Appl. Phys. Lett., 2014, 105(1), p 011601CrossRefGoogle Scholar
  18. 18.
    S. Khan, G. Azimi, B. Yildiz, and K.K. Varanasi, Role of Surface Oxygen-to-Metal Ratio on the Wettability of Rare-Earth Oxides, Appl. Phys. Lett., 2015, 106(6), p 061601CrossRefGoogle Scholar
  19. 19.
    S. Prakash, S. Ghosh, A. Patra, M. Annamalai, M.R. Motapothula, S. Sarkar, S.J. Tan, J. Zhunan, K.P. Loh, and T. Venkatesan, Intrinsic Hydrophilic Nature of Epitaxial Thin-Film of Rare-Earth Oxide Grown by Pulsed Laser Deposition, Nanoscale, 2018, 10(7), p 3356-3361CrossRefGoogle Scholar
  20. 20.
    J. Tam, G. Palumbo, U. Erb, and G. Azimi, Robust Hydrophobic Rare Earth Oxide Composite Electrodeposits, Adv. Mater. Interfaces, 2017, 4(24), p 1700850CrossRefGoogle Scholar
  21. 21.
    K. Nakayama, T. Hiraga, C. Zhu, E. Tsuji, Y. Aoki, and H. Habazaki, Facile Preparation of Self-Healing Superhydrophobic CeO2 Surface by Electrochemical Processes, Appl. Surf. Sci., 2017, 423, p 968-976CrossRefGoogle Scholar
  22. 22.
    Y.J. Cho, H. Jang, K.S. Lee, and D.R. Kim, Direct Growth of Cerium Oxide Nanorods on Diverse Substrates for Superhydrophobicity and Corrosion Resistance, Appl. Surf. Sci., 2015, 340, p 96-101CrossRefGoogle Scholar
  23. 23.
    Y. Cai, T.W. Coyle, G. Azimi, and J. Mostaghimi, Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray, Sci. Rep., 2016, 6, p 24670CrossRefGoogle Scholar
  24. 24.
    P. Xu, L. Pershin, J. Mostaghimi, and T.W. Coyle, Efficient One-Step Fabrication of Ceramic Superhydrophobic Coatings by Solution Precursor Plasma Spray, Mater. Lett., 2018, 211, p 24-27CrossRefGoogle Scholar
  25. 25.
    P. Xu, T.W. Coyle, L. Pershin, and J. Mostaghimi, Superhydrophobic Ceramic Coating: Fabrication by Solution Precursor Plasma Spray and Investigation of Wetting Behavior, J. Colloid Interface Sci., 2018, 523, p 35-44CrossRefGoogle Scholar
  26. 26.
    N. Zhang, F. Sun, L. Zhu, M. Planche, H. Liao, C. Dong, and C. Coddet, Measurement of Specific Enthalpy under Very Low Pressure Plasma Spray Condition, J. Therm. Spray Technol., 2012, 21(3–4), p 489-495CrossRefGoogle Scholar
  27. 27.
    M. Gindrat, J.L. Dorier, C. Hollenstein, M. Loch, A. Refke, A. Salito, and G. Barbezat, Effect of Specific Operating Conditions on the Properties of LPPS Plasma Jets Expanding at Low Pressure, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., March 4-6, 2002 (Essen, Germany), DVS Deutscher Verband für Schweißen, 2002Google Scholar
  28. 28.
    K. Takeda, M. Ito, and S. Takeuchi, Properties of Coatings and Applications of Low Pressure Plasma Spray, Pure Appl. Chem., 1990, 62(9), p 1773-1782CrossRefGoogle Scholar
  29. 29.
    H.J. Kim and S.H. Hong, Comparative Measurements on Thermal Plasma Jet Characteristics in Atmospheric and Low Pressure Plasma Sprayings, IEEE Trans. Plasma Sci., 1995, 23(5), p 852-859CrossRefGoogle Scholar
  30. 30.
    Y. Zhao, P. Grant, and B. Cantor, Modelling and Experimental Analysis of Vacuum Plasma Spraying. Part I: Prediction of Initial Plasma Properties at Plasma Gun Exit, Modell. Simul. Mater. Sci. Eng., 2000, 8(4), p 497CrossRefGoogle Scholar
  31. 31.
    P. Han and X. Chen, Modeling of the Supersonic Argon Plasma Jet at Low Gas Pressure Environment, Thin Solid Films, 2001, 390(1–2), p 181-185CrossRefGoogle Scholar
  32. 32.
    Y. Zhao, P. Grant, and B. Cantor, Modelling and Experimental Analysis of Vacuum Plasma Spraying. Part II: Prediction of Temperatures and Velocities of Plasma Gases and Ti Particles in a Plasma Jet, Modell. Simul. Mater. Sci. Eng., 2000, 8(4), p 515CrossRefGoogle Scholar
  33. 33.
    C. Crowe, R. Gore, and T. Troutt, Particle Dispersion by Coherent Structures in Free Shear Flows, Part. Sci. Technol., 1985, 3(3-4), p 149-158CrossRefGoogle Scholar
  34. 34.
    E.K. Longmire and J.K. Eaton, Structure of a Particle-Laden Round Jet, J. Fluid Mech., 1992, 236, p 217-257CrossRefGoogle Scholar
  35. 35.
    M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas: Fundamentals and Applications, Springer, New York, 1994CrossRefGoogle Scholar
  36. 36.
    A. Anwaar, L. Wei, H. Guo, and B. Zhang, Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition, J. Therm. Spray Technol., 2017, 26(3), p 292-301CrossRefGoogle Scholar
  37. 37.
    E. Loth, Compressibility and Rarefaction Effects on Drag of a Spherical Particle, AIAA J., 2008, 46(9), p 2219-2228CrossRefGoogle Scholar
  38. 38.
    S.L. Anderson and E.K. Longmire, Particle Motion in the Stagnation Zone of an Impinging Air Jet, J. Fluid Mech., 1995, 299, p 333-366CrossRefGoogle Scholar
  39. 39.
    P. Huang, J. Heberlein, and E. Pfender, Particle Behavior in a Two-Fluid Turbulent Plasma Jet, Surf. Coat. Technol., 1995, 73(3), p 142-151CrossRefGoogle Scholar
  40. 40.
    M. Jadidi, M. Mousavi, S. Moghtadernejad, and A. Dolatabadi, A Three-Dimensional Analysis of the Suspension Plasma Spray Impinging on a Flat Substrate, J. Therm. Spray Technol., 2015, 24(1–2), p 11-23Google Scholar
  41. 41.
    N. Michael and B. Bhushan, Hierarchical Roughness Makes Superhydrophobic States Stable, Microelectron. Eng., 2007, 84(3), p 382-386CrossRefGoogle Scholar
  42. 42.
    A. Cassie and S. Baxter, Wettability of Porous Surfaces, Trans. Faraday Soc., 1944, 40, p 546-551CrossRefGoogle Scholar
  43. 43.
    A. Vardelle, M. Vardelle, and P. Fauchais, Influence of Velocity and Surface Temperature of Alumina Particles on the Properties of Plasma Sprayed Coatings, Plasma Chem. Plasma Process., 1982, 2(3), p 255-291CrossRefGoogle Scholar
  44. 44.
    R.N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., 1936, 28(8), p 988-994CrossRefGoogle Scholar
  45. 45.
    P. Xu, T.W. Coyle, L. Pershin, and J. Mostaghimi, Fabrication of Micro-/Nano-structured Superhydrophobic Ceramic Coating with Reversible Wettability via a Novel Solution Precursor Vacuum Plasma Spray Process, Mater. Des., 2018, 160, p 974-984CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Pengyun Xu
    • 1
    Email author
  • Thomas W. Coyle
    • 1
  • Larry Pershin
    • 1
  • Javad Mostaghimi
    • 1
  1. 1.Centre for Advanced Coating TechnologiesUniversity of TorontoTorontoCanada

Personalised recommendations