Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 8, pp 1291–1301 | Cite as

Atmospheric Plasma-Sprayed Hydroxyapatite Coatings with (002) Texture

  • Xiao-mei Liu
  • Ding-yong He
  • Zheng Zhou
  • Guo-hong Wang
  • Zeng-jie Wang
  • Xu Wu
  • Zhen Tan
Peer Reviewed
  • 24 Downloads

Abstract

Hydroxyapatite (HA) coatings are being widely used in biomedical applications owing to their excellent biocompatibility and osteoconductivity. Recent studies have demonstrated that the crystallographic texture plays an important role in improving the chemical stability and mechanical properties of HA coatings. In this study, optimized APS parameter was selected to deposit HA coatings with strong (002) crystallographic texture, high phase purity and enhanced melting state. Cross-sectional SEM images show uniformly distributed columnar grains perpendicular to the coating surface. To study the formation conditions of columnar grains, coatings with distinct microstructure were deposited with different spray parameters. Moreover, HA coatings were deposited on substrates with varying temperatures such as 25, 300 and 600 °C at a long stand-off distance to evaluate the role of the substrate temperature in the formation of columnar grains. The results indicate that completely molten in-flight particles and slow cooling rate are necessary conditions to form a strong crystallographic texture. The present study suggests that the crystalline structure of HA coatings deposited and formed by APS could be well controlled by modifying spray parameters and substrate temperature.

Keywords

atmospheric plasma spraying columnar grains hydroxyapatite texture 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51471010) and the National Natural Science Fund for Innovative Research Groups (Grant No. 51621003). The authors would like to gratefully thank Associate Professor F. Yang, College of Foreign Languages, Beijing University of Technology, for her kind assistance during writing of this contribution.

References

  1. 1.
    R.B. Heimann, Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties, J. Therm. Spray Technol., 2016, 25(5), p 827-850CrossRefGoogle Scholar
  2. 2.
    B. Locardi, U.E. Pazzaglia, C. Gabbi, and B. Profilo, Thermal Behaviour of Hydroxyapatite Intended for Medical Applications, Biomaterials, 1993, 14(6), p 437-441CrossRefGoogle Scholar
  3. 3.
    Y.C. Yang and C.Y. Yang, Mechanical and Histological Evaluation of a Plasma Sprayed Hydroxyapatite Coating on a Titanium Bond Coat, Ceram. Int., 2016, 39(6), p 6509-6516CrossRefGoogle Scholar
  4. 4.
    R.B. Heimann, Structure, Properties, and Biomedical Performance of Osteoconductive Bioceramic Coatings, Surf. Coat. Technol., 2013, 233, p 27-38CrossRefGoogle Scholar
  5. 5.
    H.R. Wenk and F. Heidelbach, Crystal Alignment of Carbonated Apatite in Bone and Calcified Tendon: Results from Quantitative Texture Analysis, Bone, 1999, 24(4), p 361-369CrossRefGoogle Scholar
  6. 6.
    K. Fujisaki, M. Todoh, A. Niida, R. Shibuya, S. Kitami, and S. Tadano, Orientation and Deformation of Mineral Crystals in Tooth Surfaces, J. Mech. Behav. Biomed., 2012, 10, p 176-182CrossRefGoogle Scholar
  7. 7.
    T. Nakano, K. Kaibara, T. Ishimoto, Y. Tabata, and Y. Umakoshi, Biological Apatite (BAp) Crystallographic Orientation and Texture as a New Index for Assessing the Microstructure and Function of Bone Regenerated by Tissue Engineering, Bone, 2012, 51, p 741-747CrossRefGoogle Scholar
  8. 8.
    Y.M. Wang, X.M. Liu, T.T. Fan, Z. Tan, Z. Zhou, and D.Y. He, In Vitro Evaluation of Hydroxyapatite Coatings with (002) Crystallographic Texture Deposited by Micro-plasma Spraying, Mater. Sci. Eng. C, 2017, 75, p 596-601CrossRefGoogle Scholar
  9. 9.
    H. Kim, R.P. Camata, S. Chowdhury, and Y.K. Vohra, In Vitro Dissolution and Mechanical Behavior of c-axis Preferentially Oriented Hydroxyapatite Thin Films Fabricated by Pulsed Laser Deposition, Acta Biomater., 2010, 6(8), p 3234-3241CrossRefGoogle Scholar
  10. 10.
    H. Kim, R.P. Camata, S. Lee, G.S. Rohrer, A.D. Rollett, K.M. Hennessy, S.L. Bellis, and Y.K. Vohra, Calcium Phosphate Bioceramics with Tailored Crystallographic Texture for Controlling Cell Adhesion, Mater. Res. Soc. Symp. Proc., 2006, 925, p 0925-BB02-07CrossRefGoogle Scholar
  11. 11.
    D.Y. Lin and X.X. Wang, Electrodeposition of Hydroxyapatite Coating on CoNiCrMo Substrate in Dilute Solution, Surf. Coat. Technol., 2010, 204, p 3205-3213CrossRefGoogle Scholar
  12. 12.
    T. Nakano, W. Fujitani, and Y. Umakoshi, Synthesis of Apatite Ceramics with Preferential Crystal Orientation, Mater. Sci. Forum, 2004, 449–452, p 1289-1292CrossRefGoogle Scholar
  13. 13.
    M. Manso, P. Herrero, M. Fernández, M. Langlet, and J.M. Martínez-Duart, Textured Hydroxyapatite Interface onto Biomedical Titanium-Based Coatings, J. Biomed. Mater. Res. A, 2003, 64A(4), p 600-605CrossRefGoogle Scholar
  14. 14.
    A.A. Ivanova, M.A. Surmeneva, R.A. Surmenev, and D. Depla, Influence of Deposition Conditions on the Composition, Texture and Microstructure of RF-Magnetron Sputter-Deposited Hydroxyapatite Thin Films, Thin Solid Films, 2015, 591, p 368-374CrossRefGoogle Scholar
  15. 15.
    L. Zhao, K. Bobzin, F. Ernst, J. Zwick, and E. Lugscheider, Study on the Influence of Plasma Spray Processes and Spray Parameters on the Structure and Crystallinity of Hydroxyapatite Coatings, Mater. Werkst., 2006, 37, p 516-520CrossRefGoogle Scholar
  16. 16.
    Y.M. Wang, T.T. Fan, Z. Zhou, and D.Y. He, Hydroxyapatite Coating with Strong (002) Crystallographic Texture Deposited by Micro-plasma Spraying, Mater. Lett., 2016, 185, p 484-487CrossRefGoogle Scholar
  17. 17.
    X.M. Liu, D.Y. He, Y.M. Wang, Z. Zhou, G.H. Wang, Z. Tan, and Z.J. Wang, The Influence of Spray Parameters on the Characteristics of Hydroxyapatite In-flight Particles, Splats and Coatings by Micro-plasma Spraying, J. Therm. Spray Technol., 2018, 27(4), p 667-679CrossRefGoogle Scholar
  18. 18.
    V.F. Shamray, V.P. Sirotinkin, I.V. Smirnov, V.I. Kalita, A.Y. Fedotov, S.M. Barinov, and V.S. Komlev, Structure of the Hydroxyapatite Plasma-Sprayed Coatings Deposited on Pre-heated Titanium Substrates, Ceram. Int., 2017, 43(12), p 9105-9109CrossRefGoogle Scholar
  19. 19.
    M. Inagaki, Y. Yokogawa, and T. Kameyama, Formation of Highly Oriented Hydroxyapatite in Hydroxyapatite/Titanium Composite Coatings by Radiofrequency Thermal Plasma Spraying, J. Mater. Sci. Mater. Med., 2003, 14(10), p 919-922CrossRefGoogle Scholar
  20. 20.
    W.D. Tong, J.Y. Chen, X.D. Li, J.M. Feng, Y. Cao, Z.J. Yang, and X.D. Zhang, Preferred Orientation of Plasma Sprayed Hydroxyapatite Coatings, J. Mater. Sci., 1996, 31(14), p 3739-3742CrossRefGoogle Scholar
  21. 21.
    T. Toda, M. Kou, S. Fujimoto, O. Fukumasa, and W. Oohara, Production of High Quality Ti-HAp Functionally Graded Coating Using Well-Controlled Thermal Plasmas, J. Plasma Fusion Res., 2009, 8, p 1422-1426Google Scholar
  22. 22.
    I.H. Jung, K.K. Bae, K.C. Song, M.S. Yang, and S.K. Ihm, Columnar Grain Growth of Yttria-Stabilized-Zirconia in Inductively Coupled Plasma Spraying, J. Therm. Spray Technol., 2004, 13(4), p 544-553CrossRefGoogle Scholar
  23. 23.
    K.A. Gross, C.C. Berndt, and H. Herman, Amorphous Phase Formation in Plasma-Sprayed Hydroxyapatite Coatings, J. Biomed. Mater. Res. A., 1998, 39, p 407-414CrossRefGoogle Scholar
  24. 24.
    W. Li, J. Liu, Y. Zhou, S.F. Wen, Q.S. Wei, C.Z. Yan, and Y.S. Shi, Effect of Substrate Preheating on the Texture, Phase and Nanohardness of a Ti–45Al–2Cr–5Nb Alloy Processed by Selective Laser Melting, Scripta Mater., 2016, 118, p 13-18CrossRefGoogle Scholar
  25. 25.
    M. Inagaki and T. Kameyama, Phase Transformation of Plasma-sprayed Hydroxyapatite Coating with Preferred Crystalline Orientation, Biomaterials, 2007, 28(19), p 2923-2931CrossRefGoogle Scholar
  26. 26.
    K.A. Khor, H. Li, and P. Cheang, Processing–Microstructure–Property Relations in HVOF Sprayed Calcium Phosphate Based Bioceramic Coatings, Biomaterials, 2003, 24(13), p 2233-2243CrossRefGoogle Scholar
  27. 27.
    C.Y. Yang, B.C. Wang, E. Chang, and J.D. Wu, The Influences of Plasma Spraying Parameters on the Characteristics of Hydroxyapatite Coatings: A Quantitative Study, J. Mater. Sci. Mater. Med., 1995, 6(5), p 249-257CrossRefGoogle Scholar
  28. 28.
    I. Demnati, D. Grossin, C. Combes, and C. Rey, Plasma-Sprayed Apatite Coatings: Review of Physical-Chemical Characteristics and their Biological Consequences, J. Med. Biol. Eng., 2014, 34(1), p 1-7CrossRefGoogle Scholar
  29. 29.
    S. Dyshlovenko, B. Pateyron, L. Pawlowski, and D. Murano, Numerical Simulation of Hydroxyapatite Powder Behaviour in Plasma Jet, Surf. Coat. Technol., 2004, 187(2-3), p 408-409CrossRefGoogle Scholar
  30. 30.
    C.J. Liao, F.H. Lin, K.S. Chen, and J.S. Sun, Thermal Decomposition and Reconstitution of Hydroxyapatite in Air Atmosphere, Biomaterials, 1999, 20(19), p 1807-1813CrossRefGoogle Scholar
  31. 31.
    T.J. Levingstone, Optimisation of Plasma Sprayed Hydroxyapatite Coatings, PhD thesis, Dublin City University (2008)Google Scholar
  32. 32.
    S. Guessasma, G. Montavon, and C. Coddet, Velocity and Temperature Distributions of Alumina–titania In-flight Particles in the Atmospheric Plasma Spray Process, Surf. Coat. Technol., 2005, 192(1), p 70-76CrossRefGoogle Scholar
  33. 33.
    X.M. Liu, D.Y. He, Z. Zhou, G.H. Wang, Z.J. Wang, W. Xu, and Z. Tan, Characteristics of (002) Oriented Hydroxyapatite Coatings Deposited by Atmospheric Plasma Spraying, Coating, 2018, 8, p 258CrossRefGoogle Scholar
  34. 34.
    T. Kameyama, A. Hasegawa, A. Motoe, M. Ueda, K. Onuma, K. Akashi, and K. Fukuda, A Radio-Frequency Thermal Plasma Spraying for Coating of Hydroxyapatite, in First International Conference on Processing Materials for Properties, Japan (1993), pp. 1097–1100Google Scholar
  35. 35.
    T. Kameyama, M. Ueda, K. Onuma, A. Motoe, K. Ohsaki, H.Tanizaki, and K. Iwasaki, Characteristics, of a radio-frequency thermal plasma spraying method for the coating of hydroxyapatite, in Proceeding of the 14th International Thermal Spray Conference, Japan (1995), p. 187Google Scholar
  36. 36.
    R. Astala, and M.J. Stott, First-Principles Study of Hydroxyapatite Surfaces and Water Adsorption, Phys. Rev. B, 2008, 78(7), p 075427CrossRefGoogle Scholar
  37. 37.
    A.A. Ivanova, M.A. Surmeneva, R.A. Surmenev, and D. Depla, Structural Evolution and Growth Mechanisms of RF-Magnetron Sputter-Deposited Hydroxyapatite Thin Films on the Basis of Unified Principles, Appl. Surf. Sci., 2017, 425, p 497-506CrossRefGoogle Scholar
  38. 38.
    K.A. Gross, The Amorphous Phases in Hydroxyapatite Coatings, State University of New Yoke at Stony Brook, Stony Brook, NY, 1997Google Scholar
  39. 39.
    H. Kim, R.P. Camata, S. Lee, G.S. Rohrer, A.D. Rollett, and Y.K. Vohra, Crystallographic Texture in Pulsed Laser Deposited Hydroxyapatite Bioceramic Coatings, Acta Mater., 2007, 55(1), p 131-139CrossRefGoogle Scholar
  40. 40.
    R. McPherson, N. Gane, and T.J. Bastow, Structural Characterization of Plasma-Sprayed Hydroxyapatite Coatings, J. Mater. Sci. Mater. Med., 1995, 6, p 327-334CrossRefGoogle Scholar
  41. 41.
    F.H. Lin, C.J. Liao, K.S. Chen, and J.S. Sun, Thermal Reconstruction Behavior of the Quenched Hydroxyapatite Powder During Reheating in Air, Mater. Sci. Eng., C, 2000, 13(1-2), p 97-104CrossRefGoogle Scholar
  42. 42.
    J. Cizek, K.A. Khor, and Z. Prochazka, Influence of Spraying Conditions on Thermal and Velocity Properties of Plasma Sprayed Hydroxyapatite, Mater. Sci. Eng., C, 2007, 27(2), p 340-344CrossRefGoogle Scholar
  43. 43.
    T.J. Levingstone, M. Ardhaoui, K. Benyounis, L. Looney, and J.T. Stokes, Plasma Sprayed Hydroxyapatite Coatings: Understanding Process Relationships Using Design of Experiment Analysis, Surf. Coat. Technol., 2015, 283, p 29-36CrossRefGoogle Scholar
  44. 44.
    M. Fukumoto, E. Nishioka, and T. Matsubara, Flattening and Solidification Behavior of a Metal Droplet on a Flat Substrate Surface Held at Various Temperatures, Surf. Coat. Technol., 1999, 120, p 131-137CrossRefGoogle Scholar
  45. 45.
    V.V. Sobolev, Formation of Splat Morphology During Thermal Spraying, Mater. Lett., 1998, 36(1-4), p 123-127CrossRefGoogle Scholar
  46. 46.
    H.K. Tsou, P.Y. Hsieh, C.J. Chung, T.W. Shyr, and J.L. He, Low-temperature Deposition of Anatase TiO2 on Medical Grade Polyetheretherketone to Assist Osseous Integration, Surf. Coat. Technol., 2009, 204(6-7), p 1121-1125CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringBeijing University of TechnologyChaoyang District, BeijingChina
  2. 2.Beijing Engineering Research Center of Eco-Materials and LCABeijingChina

Personalised recommendations