Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 7, pp 1143–1152 | Cite as

Influence of Rare Earth on the High-Temperature Sliding Wear Behavior of WC-12Co Coating Prepared by HVOF Spraying

  • Yan Liu
  • Zongqiu Hang
  • Guiying Yang
  • Hao Fu
  • Naiyuan Xi
  • Hui Chen
Peer Reviewed
  • 20 Downloads

Abstract

In this work, WC-12Co coatings were prepared by high-velocity oxygen fuel spraying (HVOF) technology. The high-temperature sliding wear tests at 450, 550 and 650 °C were conducted on a pin-on-disk tribometer, and effects of CeO2 on the high-temperature wear behavior were investigated. The results showed that CeO2-modified WC-12Co coating possessed better sliding wear resistance than that of conventional WC-12Co coating at the tested temperatures. The maximum microhardness value of 1333 ± 25HV0.5 was available at the temperature of 550 °C for CeO2-modified WC-12Co coating worn track. The oxides formed on the worn surface played a significant role on the wear behavior. W2C, Co3O4 and ratio of CoWO4/WO3 dominated the wear behavior of the coating at 450, 550 and 650 °C, respectively.

Keywords

HVOF rare-earth, high-temperature wear properties WC-12Co coating 

Notes

Acknowledgments

This project is supported by National Natural Science Foundation of China (Grant No. 51505393).

References

  1. 1.
    M. Jafari, M.H. Enayati, M. Salehi, S.M. Nahvi, J.C. Han, and C.G. Park, High Temperature Oxidation Behavior of Micro/Nanostructured WC-Co Coatings Deposited from Ni-Coated Powders Using High Velocity Oxygen Fuel Spraying, Surf. Coat. Technol., 2016, 302, p 426-437CrossRefGoogle Scholar
  2. 2.
    Z. Geng, S. Hou, G. Shi, D. Duan, and S. Li, Tribological Behavior at Various Temperatures of WC-Co Coatings Prepared Using Different Thermal Spraying Techniques, Tribol. Int., 2016, 104, p 36-44CrossRefGoogle Scholar
  3. 3.
    G.M. Balamurugan and M. Duraiselvam, Influence of Temperature on the Wear Behaviour of WC-Co Plasma Sprayed AISI, 304 Austenitic Stainless Steel, Mater. Sci., 2010, 14, p 30-40Google Scholar
  4. 4.
    X.Q. Zhao, H.D. Zhou, and J.M. Chen, Comparative Study of the Friction and Wear Behavior of Plasma Sprayed Conventional and Nanostructured WC-12%Co Coatings on Stainless Steel, Mater. Sci. Eng. A—Struct. Mater. Prop. Microstruct. Process., 2006, 431, p 290-297CrossRefGoogle Scholar
  5. 5.
    Z. Geng, D.L. Duan, S.H. Hou, and S. Li, Tribological Behavior of WC-12Co Air Plasma-Sprayed Coating at Elevated Temperatures, Tribol. Transac., 2016, 59(1), p 55-61CrossRefGoogle Scholar
  6. 6.
    P.Q. Mi, H.J. Zhao, T. Wang, and F.X. Ye, Sliding Wear Behavior of HVOF Sprayed WC-(nano-WC-Co) Coating at Elevated Temperatures, Mater. Chem. Phys., 2018, 206, p 1-6CrossRefGoogle Scholar
  7. 7.
    T. Wang and F.X. Ye, The Elevated-Temperature Wear Behavior Evolution of HVOF Sprayed Tungsten Carbide Coatings: Respond to Heat Treatment, Int. J. Refract. Met. Hard Mater., 2018, 71, p 92-100CrossRefGoogle Scholar
  8. 8.
    Z. Geng, S. Li, D.L. Duan, and Y. Liu, Wear Behavior of WC-Co HVOF Coatings at Different Temperatures in Air and Argon, Wear, 2015, 330-331, p 348-353CrossRefGoogle Scholar
  9. 9.
    L. Bunü, Z.Y. Zhang, Z.P. Wang, and B.M. Chen, Rare Earth Effect on the Microstructure and Tribological Properties of FeNiCr Coatings, Rare Met., 2010, 29(3), p 270-275CrossRefGoogle Scholar
  10. 10.
    X.B. Qi and S.G. Zhu, Effect of CeO2 Addition on Thermal Shock Resistance of WC-12%Co Coating Deposited on Ductile Iron by Electric Contact Surface Strengthening, Appl. Surf. Sci., 2015, 349, p 792-797CrossRefGoogle Scholar
  11. 11.
    Y. Liu, G.Q. Gou, X.M. Wang, Q. Jia, H. Chen, and M.J. Tu, Effects of Rare Earth Elements on the Microstructure and Mechanical Properties of HVOF-Sprayed WC-Co Coatings, J. Therm. Spray Technol., 2014, 23(7), p 1225-1231CrossRefGoogle Scholar
  12. 12.
    Q. Yang, T. Senda, and A. Hirose, Sliding Wear Behavior of WC-12% Co Coatings at Elevated Temperatures, Surf. Coat. Technol., 2006, 200, p 4208-4212CrossRefGoogle Scholar
  13. 13.
    H. Chen, G.Q. Gou, M.J. Tu, and Y. Liu, Structure and Wear Behaviour of Nanostructured and Ultrafine HVOF Spraying WC-17Co Coatings, Surf. Eng., 2009, 25(7), p 502-506CrossRefGoogle Scholar
  14. 14.
    D.A. Stewart, P.H. Shipway, and D.G. Mccartney, Microstructural Evolution in Thermally Sprayed WC-Co Coatings: Comparison Between Nanocomposite and Conventional Starting Powders, Acta Mater., 2000, 48, p 1593-1604CrossRefGoogle Scholar
  15. 15.
    L. He, Y.F. Tan, H. Tan, Y.Q. Tu, and Z.W. Zhang, Microstructure and Tribological Properties of WC-CeO2/Ni-base Alloy Composite Coatings, Rare Metal Mater. Eng., 2014, 43(4), p 0823-0829CrossRefGoogle Scholar
  16. 16.
    S. Saladi, J. Menghani, and S. Prakash, Effect of CeO2 on Cyclic Hot-Corrosion Behavior of Detonation-Gun Sprayed Cr3C2-NiCr Coatings on Ni-Based Superalloy, J. Mater. Eng. Perf., 2015, 24(3), p 1379-1389CrossRefGoogle Scholar
  17. 17.
    S. Kamal, R. Jayaganthan, and S. Prakash, Hot Corrosion Studies of Detonation-Gun-Sprayed NiCrAlY + 0.4 wt.% CeO2 Coated Superalloys in Molten Salt Environment, J. Mater. Eng. Perform., 2011, 20(6), p 1068-1077CrossRefGoogle Scholar
  18. 18.
    G.H. Li, L.Y. Yan, H.X. Zhang, and F.C. Li, YG6R稀土硬质合金的研究 (Research of YG6R Rare Earth Carbide Alloy), Powder Metall. Tech., 1994, 12(3), p 206-209 (in Chinese)Google Scholar
  19. 19.
    H.B. Yu, H.F. Sun, B. Wu, and M.L. Liu, 降低涂层孔隙率的研究进展 (Research Development of the Way to Decrease Thermal Spraying Coating Porosity), Mater. Review, 2007, 21(1), p 68-71 (in Chinese)Google Scholar
  20. 20.
    Z.Q. Hang, N.Y. Xi, Y. Liu, Y. Liu, and H. Chen, High Temperature Oxidation Behavior of HVOF Sprayed Rare Earth Modified WC-12Co Coating, Rare Met., 2018,  https://doi.org/10.1007/s12598-018-1075-1 CrossRefGoogle Scholar
  21. 21.
    G. Goyal, H. Singh, and S. Prakash, Effect of Superficially Applied ZrO2 Inhibitor on the High Temperature Corrosion Performance of Some Fe-, Co- and Ni-Base Superalloys, Appl. Surf. Sci., 2008, 254(20), p 6653-6661CrossRefGoogle Scholar
  22. 22.
    Y.M. Zhang, M. Hida, H. Hashimoto, Z.P. Luo, and S.X. Wang, Effect of Rare-Earth Oxide (CeO2) on the Microstructures in Laser Melted Layer, J. Mater. Sci., 2000, 35, p 5389-5400CrossRefGoogle Scholar
  23. 23.
    N.S. Lim, S. Das, S.Y. Park, M.C. Kim, and C.G. Park, Fabrication and Microstructural Characterization of Nano-Structured WC-Co Coatings, Surf. Coat. Technol., 2010, 205(2), p 430-435CrossRefGoogle Scholar
  24. 24.
    Q. Zhan, L.G. Yu, F.X. Ye, Q.J. Xue, and H. Li, Quantitative Evaluation of the Decarburization and Microstructure Evolution of WC-Co During Plasma Spraying, Surf. Coat. Technol., 2012, 206, p 4068-4074CrossRefGoogle Scholar
  25. 25.
    Y.M. Wu, J. Zhao, X.M. Chen, L. Fu, P.Z. Mao, and X.L. Zhou, Effect of High Temperature and Oxidation on Microstructure and Properties of WC-10Co4Cr Coatings, The Chinese Journal of Nonferrous Metals, 2017, 27(7), p 1395-1402Google Scholar
  26. 26.
    M. Jafari, J.C. Han, J.B. Seol, and C.G. Park, Tribological Properties of HVOF-Sprayed WC-Co Coatings Deposited from Ni-Plated Powders at Elevated Temperature, Surf. Coat. Technol., 2017, 327, p 48-58CrossRefGoogle Scholar
  27. 27.
    M. Aristizabal, J.M. Sanchez, N. Rodriguez, F. Ibarreta, and R. Martinez, Comparison of the Oxidation Behaviour of WC-Co and WC-Ni-Co-Cr Cemented Carbides, Corros. Sci., 2011, 53, p 2754-2760CrossRefGoogle Scholar
  28. 28.
    M. Aristizabal, N. Rodriguez, F. Ibarreta, R. Martinez, and J.M. Sanchez, Liquid Phase Sintering and Oxidation Resistance of WC-Ni-Co-Cr Cemented Carbides, Int. J. Refract. Met. Hard Mater., 2010, 28, p 516-522CrossRefGoogle Scholar
  29. 29.
    A. Erdemir, A Crystal Chemical Approach to the Formulation of Self-Lubricating Nanocomposite Coatings, Surf. Coat. Technol., 2005, 200, p 1792-1796CrossRefGoogle Scholar
  30. 30.
    A.A. Erdemir, Crystal-Chemical Approach to Lubrication by Solid Oxides, Tribol. Lett., 2000, 8(2), p 97-102CrossRefGoogle Scholar
  31. 31.
    V.B. Voitovich, V.V. Sverdel, R.F. Voitovich, and E.I. Golovko, Oxidation of WC-Co, WC-Ni and WC-Co-Ni Hard Metals in the Temperature Range 500-800 °C, Int. J. Refract. Met. Hard Mater., 1996, 14(4), p 289-295CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Yan Liu
    • 1
  • Zongqiu Hang
    • 1
  • Guiying Yang
    • 1
  • Hao Fu
    • 1
  • Naiyuan Xi
    • 1
  • Hui Chen
    • 1
  1. 1.School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduPeople’s Republic of China

Personalised recommendations