Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 7, pp 1041–1055 | Cite as

Study of the Synchronous Injection in a Controlled Pulsed Arc Plasma

  • Fabrice Mavier
  • Fadi Zoubian
  • Louise Lemesre
  • Martine Lejeune
  • Marguerite Bienia
  • Vincent Rat
Peer Reviewed
  • 59 Downloads

Abstract

In the field of plasma spray technologies, new processes are developing to obtain coatings with nanostructured architectures. Difficulties of understanding and controlling the process originate from the continuous injection of a liquid material and the power instabilities of the current torches which strongly affect the heat and momentum transfers to the nanometric particles. This paper reports an original method to make TiO2 coatings by suspension plasma spraying. A direct current (DC) power supply applying time-modulated current amplitude to a custom DC torch is used to generate at low power (1.5 kW) a pulsed laminar plasma jet with periodic oscillations of its properties. To make best use of this pulsed mode, a synchronization device was developed. It allows triggering from the arc voltage an inkjet nozzle to deliver at a precise moment a single droplet to improve the control of plasma/material interaction. An ink of TiO2 anatase solid particles is formulated to be compatible with a drop-on-demand printhead dispenser. In-flight diagnostic is made by optical emission spectroscopy and a fast shutter camera. TiO2 coatings are characterized by scanning electron microscopy, x-ray diffraction and transmission electron microscopy. Results show that homogeneous TiO2 coatings of nanostructured cauliflowers shapes are obtained thanks to the controlled injection system. A competition between nucleation mechanism and liquid particles deposition are also observed. These deposits correspond to a mixture of anatase and rutile phases.

Notes

Acknowledgment

The Electric Arc Association (AAE) is thanked for financial support (0C2AA043Z). We thank Limoges University materials characterization platform CARMALIM for their assistance. We especially thank Dr Pierre Carles for TEM characterization and Heloise Hyvernaud for SEM characterization. Sébastien Faure, Nicolas Loris and Geoffroy Rivaud are thanked for technical assistance in the experimental setup. Dr Sandrine Lucas is thanked for the specific surface measurements.

References

  1. 1.
    Z. Wang, U. Helmersson, and P.-O. Kall, Optical Properties of Anatase TiO2 Thin Films Prepared by Aqueous Sol–Gel Process at Low Temperature, Thin Solid Films, 2002, 405(1–2), p 50-54CrossRefGoogle Scholar
  2. 2.
    L.J. Pereira, P.N. Lisboa Filho, J. Acuña, I.S. Brandt, A.A. Pasa, A.R. Zanatta, J. Vilcarromero, A. Beltran, and J.H. Dias da Silva, Enhancement of Optical Absorption by Modulation of the Oxygen Flow of TiO2 Films Deposited by Reactive Sputtering, J. Appl. Phys., 2012, 111, p 113513CrossRefGoogle Scholar
  3. 3.
    N. Rausch and E.P. Burte, Thin High-Dielectric TiO2 Films Prepared by Low Pressure MOCVD, Microelectron. Eng., 1992, 19(1), p 725-728CrossRefGoogle Scholar
  4. 4.
    A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 1972, 238, p 37-38CrossRefGoogle Scholar
  5. 5.
    J. Yu, X. Zhao, and Q. Zhao, Photocatalytic Activity of Nanometer TiO2 Thin Films Prepared by the Sol–Gel Method, Mater. Chem. Phys., 2001, 69(1–3), p 25-29CrossRefGoogle Scholar
  6. 6.
    M. Riley, V. Wu, S. Liu, W. Gill, T.-M. Lu, and J. Plawsky, Surface Area and Porosity in Obliquely Grown Photocatalytic Titanium Dioxide for Air Purification, J. Appl. Phys., 2014, 115, p 174907CrossRefGoogle Scholar
  7. 7.
    M.A. Lazar, S. Varghese, and S.S. Nair, Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates, Catalysts, 2012, 2, p 572-601CrossRefGoogle Scholar
  8. 8.
    T.N. Obee and R.T. Brown, TiO2 Photocatalysis for Indoor Air Applications: Effect of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene and 1,3-Butadiene, Environ. Sci. Technol., 1995, 29(5), p 1223-1231CrossRefGoogle Scholar
  9. 9.
    K. Hashimoto, H. Irie, and A. Fujishima, TiO2 Photocatalysis: A Historical Overview and Future Prospects, Jpn. J. Appl. Phys., 2005, 44(12), p 8269-8285CrossRefGoogle Scholar
  10. 10.
    C.M. Malengreaux, G.M.-L. Léonard, S.L. Pirard, I. Cimieri, S.D. Lambert, J.R. Bartlett, and B. Heinrichs, How to Modify the Photocatalytic Activity of TiO2 Thin Films Through Their Roughness by Using Additives. A Relation Between Kinetics, Morphology and Synthesis, Chem. Eng. J., 2014, 243, p 537-548CrossRefGoogle Scholar
  11. 11.
    S. Segota, L. Curcovic, D. Ljubas, V. Svetlicic, I. Fiamengo Houra, and N. Tomasic, Synthesis, Characterization and Photocatalytic Properties of Sol-Gel TiO2 Films, Ceram. Int., 2011, 37, p 1153-1160CrossRefGoogle Scholar
  12. 12.
    K. Eufinger, D. Poelman, H. Poelman, R. De Gryse, and G.B. Marin, Effect of Microstructure and Crystallinity on the Photocatalytic Activity of TiO2 Thin Films Deposited by DC Magnetron Sputtering, J. Phys. D Appl. Phys., 2007, 40, p 5232-5238CrossRefGoogle Scholar
  13. 13.
    J. Yu, X. Zhao, and Q. Zhao, Effect of Surface Structure on Photocatalytic Activity of TiO2 Thin Films Prepared by Sol-Gel Method, Thin Solid Films, 2000, 379, p 7-14CrossRefGoogle Scholar
  14. 14.
    C.Y. Jimmy, J. Yu, W. Ho, and J. Zhao, Light-Induced Super-Hydrophilicity and Photocatalytic Activity of Mesoporous TiO2 Thin Films, J. Photochem. Photobiol. A Chem., 2002, 148, p 331-339CrossRefGoogle Scholar
  15. 15.
    K. Nakata and A. Fujishima, TiO2 Photocatalysis: Design and Applications, J. Photochem. Photobiol., C, 2012, 13, p 169-189CrossRefGoogle Scholar
  16. 16.
    L. Liu, H. Zhao, J.M. Andino, and Y. Li, Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile and Brookite Polymorphs and Exploration of Surface Chemistry, ACS Catal., 2012, 2(8), p 1817-1828CrossRefGoogle Scholar
  17. 17.
    B. Ohtani, Y. Ogawa, and S.I. Nishimoto, Photocatalytic Activity of Amorphous—Anatase Mixture of Titanium (IV) Oxide Particles Suspended in Aqueous Solutions, J. Phys. Chem. B, 1997, 101, p 3746-3752CrossRefGoogle Scholar
  18. 18.
    D.A.H. Hanaor and C.C. Sorell, Review of the Anatase to Rutile Phase Transformation, J. Mater. Sci., 2011, 46, p 855-874CrossRefGoogle Scholar
  19. 19.
    D. Samélor, A.M. Lazar, M. Aufray, C. Tendero, L. Lacroix, J.D. Béguin, B. Caussat, H. Vergnes, J. Alexis, D. Poquillon, N. Pébère, A. Gleizes, and C. Vahlas, Amorphous Alumina Coatings: Processing, Structure and Remarkable Barrier Properties, J. Nanosci. Nanotechnol., 2011, 11(9), p 8387-8391CrossRefGoogle Scholar
  20. 20.
    H. Cheng, J. Wang, Y. Zhao, and X. Hang, Effect of Phase Composition, Morphology and Specific Surface Area on the Photocatalytic Activity of TiO2 Nanomaterials, RSC Adv., 2014, 4(87), p 47031-47038CrossRefGoogle Scholar
  21. 21.
    T. Ohno, K. Sarukawa, K. Tokieda, and M. Matsumura, Morphology of a TiO2 Photocatalyst Consisting of Anatase and Rutile Crystalline Phases, J. Catal., 2001, 203, p 82-86CrossRefGoogle Scholar
  22. 22.
    C. Wu, Y. Yue, X. Deng, W. Hua, and Z. Gao, Investigation on the Synergetic Effect Between Anatase and Rutile Nanoparticles in Gas-Phase Photocatalytic Oxidations, Catal. Today, 2004, 93, p 863-869CrossRefGoogle Scholar
  23. 23.
    R. Kaplan, B. Erjavec, and A. Pintar, Enhanced Photocatalytic Activity of Single-Phase, Nanocomposite and Physically Mixed TiO2 Polymorphs, Appl. Catal. A, 2015, 489, p 51-60CrossRefGoogle Scholar
  24. 24.
    X. Zhang, Y. Lin, D. He, J. Zhang, Z. Fan, and T. Xie, Interface Junction at Anatase/Rutile in Mixed-Phase TiO2: Formation and Photogenerated Charge Carriers Properties, Chem. Phys. Lett., 2011, 504, p 71-75CrossRefGoogle Scholar
  25. 25.
    K.S. Yeung and Y.W. Lam, A Simple Chemical Vapour Deposition Method for Depositing Thin TiO2 Films, Thin Solid Films, 1983, 109(2), p 169-178CrossRefGoogle Scholar
  26. 26.
    A. Borras, J.R. Sanchez-Valencia, R. Widmer, V.J. Rico, A. Justo, and A.R. Gonzalez-Elipe, Growth of Crystalline TiO2 by Plasma Enhanced Chemical Vapor Deposition, Cryst. Growth Des., 2009, 9(6), p 2868-2876CrossRefGoogle Scholar
  27. 27.
    Y. Gazal, C. Dublanche-Tixier, C. Chazelas, M. Colas, P. Carles, and P. Tristant, Multi-structural TiO2 Film Synthesized by an Atmospheric Pressure Plasma Enhanced Chemical Vapour Deposition Microwave Torch, Thin Solid Films, 2016, 600, p 43-52CrossRefGoogle Scholar
  28. 28.
    P. Fauchais, Current status and future directions of thermal spray coatings and techniques, Future Development of Thermal Spray Coatings, 1st edn., N. Espallargas, Ed., Woodhead, Sawston, 2015Google Scholar
  29. 29.
    S. Kozerski, F.T. Toma, L. Pawlowski, B. Leupolt, L. Latka, and L.M. Berger, Suspension Plasma Sprayed TiO2 Coatings Using Different Injectors and Their Photocatalytic Properties, Surf. Coat. Technol., 2010, 205(4), p 980-986CrossRefGoogle Scholar
  30. 30.
    R. Jaworski, L. Pawlowski, C. Pierlot, F. Roudet, S. Kozerski, and F. Petit, Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings, J. Therm. Spray Technol., 2010, 19(1–2), p 240-247CrossRefGoogle Scholar
  31. 31.
    G. Mauer, A. Guignard, and R. Vaßen, Plasma Spraying of Efficient Photoactive TiO2 Coatings, Surf. Coat. Technol., 2013, 220, p 40-43CrossRefGoogle Scholar
  32. 32.
    B.W. Robinson, C.J. Tighe, R.I. Gruar, A. Mills, I.P. Parkin, A.K. Tabecki, H.L. de Villiers Lovelock, and J.A. Darr, Suspension Plasma Sprayed Coatings Using Dilute Hydrothermally Produced Titania Feedstocks for Photocatalytic Applications, J. Mater. Chem. A, 2015, 3, p 12680CrossRefGoogle Scholar
  33. 33.
    L. Du, T.W. Coyle, K. Chien, L. Pershin, T. Li, and M. Golozar, Titanium Dioxide Coating Prepared by Use of a Suspension-Solution Plasma-Spray Process, J. Therm. Spray Technol., 2015, 24(6), p 915-924CrossRefGoogle Scholar
  34. 34.
    C. Delbos, J. Fazilleau, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 2: Zirconia Particle Treatment and Coating Formation, Plasma Chem. Plasma Process., 2006, 26, p 393-414CrossRefGoogle Scholar
  35. 35.
    P. Fauchais, M. Vardelle, A. Vardelle, and S. Goutier, What Do We Know, What are the Current Limitations of Suspension Plasma Spraying?, J. Therm. Spray Technol., 2015, 24(7), p 1120-1129CrossRefGoogle Scholar
  36. 36.
    R. Etchart-Salas, V. Rat, J.F. Coudert, P. Fauchais, N. Caron, K. Wittman, and S. Alexandre, Influence of Plasma Instabilities in Ceramic Suspension Plasma Spraying, J. Therm. Spray Technol., 2007, 16(5), p 857-865CrossRefGoogle Scholar
  37. 37.
    V. Rat, F. Mavier, and J.F. Coudert, Electric Arc Fluctuations in DC Plasma Spray Torch, Plasma Chem. Plasma Process., 2017, 37(3), p 549-580CrossRefGoogle Scholar
  38. 38.
    E.H. Jordan, C. Jiang, J. Roth, and M. Gell, Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2014, 23(5), p 849-859CrossRefGoogle Scholar
  39. 39.
    E. Pfender, J. Fincke, and R. Spores, Entrainment of Cold Gas into Thermal Plasma Jets, Plasma Chem. Plasma Process., 1991, 11(4), p 529-543CrossRefGoogle Scholar
  40. 40.
    R.B. Heimann, Plasma Spray Coating Principles and Applications, 2nd ed., Wiley-VCH, Weinheim, 2008Google Scholar
  41. 41.
    W. Pan, W. Zhang, W. Zhang, and C. Vu, Generation of Long, Laminar Plasma Jets at Atmospheric Pressure and Effects of Flow Turbulence, Plasma Chem. Plasma Process., 2001, 21(1), p 23-35CrossRefGoogle Scholar
  42. 42.
    E. Meillot, S. Vincent, C. Caruyer, D. Damiani, and J.P. Caltagirone, Modelling the Interactions Between a Thermal Plasma Flow and a Continuous Liquid Jet in a Suspension Spraying Process, J. Phys. D Appl. Phys., 2013, 46(22), p 224017CrossRefGoogle Scholar
  43. 43.
    P. Fauchais, J. Heberlein, and M. Boulos, Thermal Spray Fundamentals: From Powder to Part, Springer, Berlin, 2014CrossRefGoogle Scholar
  44. 44.
    O. Marchand, L. Girardot, M.P. Planche, P. Bertrand, Y. Bailly, and G. Bertrand, An Insight into Suspension Plasma Spray: Injection of the Suspension and Its Interaction with the Plasma Flow, J. Therm. Spray Technol., 2011, 20, p 1310-1320CrossRefGoogle Scholar
  45. 45.
    J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26, p 371-391CrossRefGoogle Scholar
  46. 46.
    J. Krowka, V. Rat, and J.F. Coudert, Resonant Mode for a DC Plasma Spray Torch by Means of Pressure—Voltage Coupling: Application to Synchronized Liquid Injection, J. Phys. D Appl. Phys., 2013, 46, p 224018CrossRefGoogle Scholar
  47. 47.
    J. Krowka, V. Rat, S. Goutier, and J.F. Coudert, Suspension Phased Injection in Pulsed Arc Jet for Coating Elaboration, J. Therm. Spray Technol., 2014, 23, p 786-794CrossRefGoogle Scholar
  48. 48.
    V. Rat, J. Krowka, and J.F. Coudert, Modulation of the Specific Enthalpy of a Pulsed Arc Plasma Jet, Plasma Sour. Sci. Technol., 2015, 24, p 045009CrossRefGoogle Scholar
  49. 49.
    V. Rat and J.F. Coudert, Theoretical and Experimental Investigations of the Coupling of Time-Dependent Parameters in a Blown Arc Plasma Torch, J. Phys. D Appl. Phys., 2016, 49, p 065203CrossRefGoogle Scholar
  50. 50.
    F. Mavier, V. Rat, M. Bienia, M. Lejeune, and J.F. Coudert, Suspension and Precursor Plasma Spraying by Means of Synchronous Injection in a Pulsed Arc Plasma, Surf. Coat. Technol., 2017, 318, p 18-27CrossRefGoogle Scholar
  51. 51.
    J. Fazilleau, Contribution à la compréhension des phénomènes impliqués dans la réalisation de dépôts finement structurés d’oxydes par projection de suspensions par plasma, Doctorate Thesis, University of Limoges (2003)Google Scholar
  52. 52.
    F. Mavier, L. Lemesre, V. Rat, M. Bienia, M. Lejeune, and J.F. Coudert, Pulsed Arc Plasma Jet Synchronized with Drop-on-Demand Dispenser, J. Phys. Conf. Ser., 2017, 825, p 012009CrossRefGoogle Scholar
  53. 53.
    J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26, p 371-391CrossRefGoogle Scholar
  54. 54.
    J. Fromm, Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets, IBM J. Res. Dev., 1984, 28, p 322-333CrossRefGoogle Scholar
  55. 55.
    N. Reis and B. Derby, Ink Jet Deposition of Ceramic Suspensions: Modeling and Experiments of Droplet Formation, Mater. Res. Soc. Symp. Proc., 2000, 625, p 117-122CrossRefGoogle Scholar
  56. 56.
    F. Bonaccorso, A. Bartolotta, J.N. Coleman, and C. Backes, 2D-Crystal-Based Functional Inks, Adv. Mater., 2016, 28(29), p 6136-6166CrossRefGoogle Scholar
  57. 57.
    F. Mavier, F. Zoubian, V. Rat, M. Bienia, M. Lejeune, Élaboration de dépôts avec une torche à plasma d’arc pulsé, synchronisée avec une injection jet d’encre. JITIPEE (2017).  https://doi.org/10.18145/jitipee.v3i2.148 CrossRefGoogle Scholar
  58. 58.
    F. Mavier, V. Rat, and J.F. Coudert, Influence of Time-Modulation of Applied Current on Arc Stability in DC Pulsed Plasma Spray Torch, IEEE Trans. Plasma Sci., 2017, 45(4), p 565-573CrossRefGoogle Scholar
  59. 59.
    : S. Kirner, J. Schein, G. Forster, Investigation of a pulsed current wire arc spray process, in Proceeding ITSC (2013).Google Scholar
  60. 60.
    NIST Atomic Spectra Database Lines Form https://physics.nist.gov/PhysRefData/ASD/lines_form.html. Accessed September 2017.
  61. 61.
    R.W.B. Pearse and A.G. Gaydon, The Identification of Molecular Spectra, 4th ed., Chapman and Hall, London, 1976CrossRefGoogle Scholar
  62. 62.
    R.A. Spurr and H. Myers, Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Anal. Chem., 1957, 29(5), p 760-762CrossRefGoogle Scholar
  63. 63.
    T. P. Vu, N. Otto, A. Vogel, F. Kern, A. Killinger, R. Gadow, Solid evidences proving the role of anatase content in TiO2 photocatalytic coatings by suspension plasma spraying, oral presented at RIPT 2017, France.Google Scholar
  64. 64.
    E.H. Jordan, C. Jiang, and M. Gell, The Solution Precursor Plasma Spray (SPPS) Process: A Review with Energy Considerations, J. Therm. Spray Technol., 2015, 24(7), p 1153-1165CrossRefGoogle Scholar
  65. 65.
    B. Dou, V. Dupont, P.T. Williams, H. Chen, and Y. Ding, Thermogravimetric Kinetics of Crude Glycerol, Biores. Technol., 2009, 100, p 2613-2620CrossRefGoogle Scholar
  66. 66.
    F. Mavier, F. Zoubian, M. Bienia, J.F. Coudert, M. Lejeune, V. Rat, and P. André, Plasma Spraying of Solution Precursor in Pulsed Mode: In-Flight Phenomena and Coating Deposition, Plasma Chem. Plasma Process., 2018, 38, p 657-682CrossRefGoogle Scholar
  67. 67.
    F. Girard, E. Meillot, S. Vincent, J.P. Caltagirone, and L. Bianchi, Contributions to Heat and Mass Transfer Between a Plasma Jet and Droplets in Suspension Plasma Spraying, Surf. Coat. Technol., 2015, 268, p 278-283CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Fabrice Mavier
    • 1
  • Fadi Zoubian
    • 1
  • Louise Lemesre
    • 1
  • Martine Lejeune
    • 1
  • Marguerite Bienia
    • 1
  • Vincent Rat
    • 1
  1. 1.IRCERLimogesFrance

Personalised recommendations