Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 7, pp 1064–1075 | Cite as

Self-Enhancing Thermal Insulation Performance of Bimodal-Structured Thermal Barrier Coating

  • Wei-Wei Zhang
  • Guang-Rong Li
  • Qiang Zhang
  • Guan-Jun Yang
  • Guo-Wang Zhang
  • Hong-Min Mu
Peer Reviewed
  • 62 Downloads

Abstract

Nanostructured thermal barrier coatings (nano-TBCs) are being extensively studied because of their excellent thermal barrier properties. The occurrence of sintering in TBCs is inevitable in service; however, accelerated sintering of the nano-TBCs may cause premature failure. This study focuses on the changes of microstructure and thermal conductivity of bimodal nano-TBCs during thermal exposure. Results show that there are two stages in the sintering process. It was found that the thermal conductivity increased rapidly in the first stage (from 0 to 20 h), with the rate of increase in normalized thermal conductivity equal to 140% of bimodal coating. The continuous healing of the pores was the main structural change. During the following stage (20 to 100 h), the thermal conductivity decreased with the rate of increase in normalized thermal conductivity equal to − 8% of bimodal coating. The change of structure was the opening of pores. Furthermore, self-enhancing behavior of bimodal composite coatings was discovered. The phenomenon of inevitable sintering in thermodynamics can be used to introduce large-aspect-ratio pores in the in-depth direction, which can greatly slow down the increase in thermal conductivity in service and ultimately increase the lifetime of the thermal insulation. Based on a full study of the sintering mechanism of composite coatings, the present study sheds light on the structural adjustments that lead to a lower thermal conductivity and longer service life in the advanced TBC during high-temperature service.

Keywords

aspect ratio bimodal structure self-enhancing thermal barrier coatings 

References

  1. 1.
    J. Ekberg, A. Ganvir, U. Klement, S. Creci, and L. Nordstierna, The Influence of Heat Treatments on the Porosity of Suspension Plasma-Sprayed Yttria-Stabilized Zirconia Coatings, J. Therm. Spray Technol., 2018, 27(3), p 391-401CrossRefGoogle Scholar
  2. 2.
    X. Ma and P. Ruggiero, Practical Aspects of Suspension Plasma Spray for Thermal Barrier Coatings on Potential Gas Turbine Components, J. Therm. Spray Technol., 2018, 27(4), p 591-602CrossRefGoogle Scholar
  3. 3.
    B. Zhang, L. Cheng, Y. Lu, and Q. Zhang, Scalable Preparation of Graphene Reinforced Zirconium Diboride Composites with Strong Dynamic Response, Carbon, 2018, https://doi.org/10.1016/j.carbon.2018.07.067 CrossRefGoogle Scholar
  4. 4.
    H. Wang, G. Muralidharan, D.N. Leonard, J.A. Haynes, W.D. Porter, R.D. England, and S. Sampath, Microstructural Analysis and Transport Properties of Thermally Sprayed Multiple-Layer Ceramic Coatings, J. Therm. Spray Technol., 2018, 27(3), p 371-378CrossRefGoogle Scholar
  5. 5.
    R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42CrossRefGoogle Scholar
  6. 6.
    S. Deng, P. Wang, Y. He, and J. Zhang, Surface Microstructure and High Temperature Oxidation Resistance of Thermal Sprayed NiCoCrAlY Bond-Coat Modified by Cathode Plasma Electrolysis, J. Mater. Sci. Technol., 2017, 33(9), p 1055-1060CrossRefGoogle Scholar
  7. 7.
    W.Y. Li, K. Yang, S. Yin, X.W. Yang, Y.X. Xu, and R. Lupoi, Solid-State Additive Manufacturing and Repairing by Cold Spraying: A Review, J. Mater. Sci. Technol., 2017, https://doi.org/10.1016/j.jmst.2017.09.015 CrossRefGoogle Scholar
  8. 8.
    C. Huang, W. Li, Y. Xie, M.P. Planche, H. Liao, and G. Montavon, Effect of Substrate Type on Deposition Behavior and Wear Performance of Ni-Coated Graphite/Al Composite Coatings Deposited by Cold Spraying, J. Mater. Sci. Technol., 2017, 33(4), p 338-346CrossRefGoogle Scholar
  9. 9.
    X.G. Chen, H. Zhang, H.S. Zhang, and G. Li, Ce1−xSmxO2−x/2—A Novel Type of Ceramic Material for Thermal Barrier Coatings, J. Adv. Ceram., 2016, 5(3), p 244-252CrossRefGoogle Scholar
  10. 10.
    W.W. Zhang, G.R. Li, Q. Zhang, and G.J. Yang, Comprehensive Damage Evaluation of Localized Spallation of Thermal Barrier Coatings, J. Adv. Ceram., 2017, 6(3), p 230-239CrossRefGoogle Scholar
  11. 11.
    R. Darolia, Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects, Int. Mater. Rev., 2013, 58(6), p 315-348CrossRefGoogle Scholar
  12. 12.
    L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, Y. Zhou, and P.L. Wu, Influence of Pores on the Thermal Insulation Behavior of Thermal Barrier Coatings Prepared by Atmospheric Plasma Spray, Mater. Des., 2011, 32(1), p 36-47CrossRefGoogle Scholar
  13. 13.
    R. Ghasemi and H. Vakilifard, Plasma-sprayed Nanostructured YSZ Thermal Barrier Coatings: Thermal Insulation Capability and Adhesion Strength, Ceram. Int., 2017, 43(12), p 8556-8563CrossRefGoogle Scholar
  14. 14.
    L. Guo, M. Li, Y. Zhang, and F. Ye, Improved Toughness and Thermal Expansion of Non-stoichiometry Gd2−xZr2+xO7+x/2 Ceramics for Thermal Barrier Coating Application, J. Mater. Sci. Technol., 2016, 32(1), p 28-33CrossRefGoogle Scholar
  15. 15.
    P. Ctibor, R.C. Seshadri, J. Henych, V. Nehasil, Z. Pala, and J. Kotlan, Photocatalytic and Electrochemical Properties of Single-and Multi-layer Sub-stoichiometric Titanium Oxide Coatings Prepared by Atmospheric Plasma Spraying, J. Adv. Ceram., 2016, 5(2), p 126-136CrossRefGoogle Scholar
  16. 16.
    B. Bernard, A. Quet, L. Bianchi, A. Joulia, A. Malié, V. Schick, and B. Remy, Thermal Insulation Properties of YSZ Coatings: Suspension Plasma Spraying (SPS) Versus Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS), Surf. Coat. Technol., 2017, 318, p 122-128CrossRefGoogle Scholar
  17. 17.
    M. Gupta, N. Markocsan, X.H. Li, and L. Östergren, Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2018, 27(1-2), p 84-97CrossRefGoogle Scholar
  18. 18.
    W.W. Zhang, G.R. Li, Q. Zhang, and G.J. Yang, Multiscale Pores in TBCs for Lower Thermal Conductivity, J. Therm. Spray Technol., 2017, 26(6), p 1183-1197CrossRefGoogle Scholar
  19. 19.
    E.C. Hammel, O.L.R. Ighodaro, and O.I. Okoli, Processing and Properties of Advanced Porous Ceramics: An Application Based Review, Ceram. Int., 2014, 40(10), p 15351-15370CrossRefGoogle Scholar
  20. 20.
    J. Medřický, N. Curry, Z. Pala, M. Vilemova, T. Chraska, J. Johansson, and N. Markocsan, Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former, J. Therm. Spray Technol., 2015, 24(4), p 622-628CrossRefGoogle Scholar
  21. 21.
    M. Arai and T. Suidzu, Porous Ceramic Coating for Transpiration Cooling of Gas Turbine Blade, J. Therm. Spray Technol., 2013, 22(5), p 690-698CrossRefGoogle Scholar
  22. 22.
    M. Cuglietta, J. Kuhn, and O. Kesler, A Novel Hybrid Axial-radial Atmospheric Plasma Spraying Technique for the Fabrication of Solid Oxide Fuel Cell Anodes Containing Cu Co, Ni, and Samaria-Doped Ceria, J. Therm. Spray Technol., 2013, 22(5), p 609-621CrossRefGoogle Scholar
  23. 23.
    E.F. Krivoshapkina, P.V. Krivoshapkin, and A.A. Vedyagin, Synthesis of Al2O3-SiO2-MgO Ceramics with Hierarchical Porous Structure, J. Adv. Ceram., 2017, 6(1), p 11-19CrossRefGoogle Scholar
  24. 24.
    B. Basnet, N. Sarkar, J.G. Park, S. Mazumder, and I.J. Kim, Al2O3-TiO2/ZrO2-SiO2 Based Porous Ceramics from Particle-Stabilized Wet Foam, J. Adv. Ceram., 2017, 6(2), p 129-138CrossRefGoogle Scholar
  25. 25.
    W.W. Zhang, G.R. Li, Q. Zhang, and G.J. Yang, Bimodal TBCs with Low Thermal Conductivity Deposited by a Powder-suspension Co-spray Process, J. Mater. Sci. Technol., 2018, 34(8), p 1293-1304CrossRefGoogle Scholar
  26. 26.
    S. Björklund, S. Goel, and S. Joshi, Function-dependent Coating Architectures by Hybrid Powder-Suspension Plasma Spraying: Injector Design, Processing and Concept Validation, Mater. Design, 2018, 142, p 56-65CrossRefGoogle Scholar
  27. 27.
    B. Cheng, Y.M. Zhang, N. Yang, M. Zhang, L. Chen, G.J. Yang, and C.J. Li, Sintering-Induced Delamination of Thermal Barrier Coatings by Gradient Thermal Cyclic Test, J. Am. Ceram. Soc., 2017, 100(5), p 1820-1830CrossRefGoogle Scholar
  28. 28.
    S. Paul, Stiffness of Plasma Sprayed Thermal Barrier Coatings, Coatings, 2017, 7(5), p 68-89CrossRefGoogle Scholar
  29. 29.
    J. Ilavsky, G.G. Long, A.J. Allen, and C.C. Berndt, Evolution of the Void Structure in Plasma-Sprayed YSZ Deposits During Heating, Mater. Sci. Eng., A, 1999, 272(1), p 215-221CrossRefGoogle Scholar
  30. 30.
    M. Ahrens, R. Vaßen, D. Stöver, and S. Lampenscherf, Sintering and Creep Processes in Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(3), p 432-442CrossRefGoogle Scholar
  31. 31.
    D. Basu, C. Funke, and R.W. Steinbrech, Effect of Heat Treatment on Elastic Properties of Separated Thermal Barrier Coatings, J. Mater. Res., 1999, 14(12), p 4643-4650CrossRefGoogle Scholar
  32. 32.
    M. Shinozaki, T.W. Clyne, and A. Methodology, Based on Sintering-Induced Stiffening, for Prediction of the Spallation Lifetime of Plasma-Sprayed Coatings, Acta Mater., 2013, 61(2), p 579-588CrossRefGoogle Scholar
  33. 33.
    D. Zhu and R.A. Miller, Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions, J. Therm. Spray Technol., 2000, 9(2), p 175-180CrossRefGoogle Scholar
  34. 34.
    J. Wu, H. Guo, L. Zhou, L. Wang, and S.K. Gong, Microstructure and Thermal Properties of Plasma Sprayed Thermal Barrier Coatings From Nanostructured YSZ, J. Therm. Spray Technol., 2010, 19(6), p 1186-1194CrossRefGoogle Scholar
  35. 35.
    E.H. Jordan, C. Jiang, J. Roth, and M. Gell, Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2014, 23(5), p 849-859CrossRefGoogle Scholar
  36. 36.
    S.V. Joshi and G. Sivakumar, Hybrid Processing with Powders and Solutions: A Novel Approach to Deposit Composite Coatings, J. Therm. Spray Technol., 2015, 24(7), p 1166-1186CrossRefGoogle Scholar
  37. 37.
    S.V. Joshi, G. Sivakumar, T. Raghuveer, and R.O. Dusane, Hybrid Plasma-Sprayed Thermal Barrier Coatings using Powder and Solution Precursor Feedstock, J. Therm. Spray Technol., 2014, 23(4), p 616-624CrossRefGoogle Scholar
  38. 38.
    K. Matsui, A. Matsumoto, M. Uehara, N. Enomoto, and J. Hojo, Sintering Kinetics at Isothermal Shrinkage: Effect of Specific Surface Area on the Initial Sintering Stage of Fine Zirconia Powder, J. Am. Ceram. Soc., 2007, 90(1), p 44-49CrossRefGoogle Scholar
  39. 39.
    O. Racek, C.C. Berndt, D.N. Guru, and J. Heberlein, Nanostructured and Conventional YSZ Coatings Deposited Using APS and TTPR Techniques, Surf. Coat. Tech., 2006, 201(1-2), p 338-346CrossRefGoogle Scholar
  40. 40.
    Y. Bai, L. Zhao, J.J. Tang, S.Q. Ma, C.H. Ding, J.F. Yang, L. Yu, and Z.H. Han, Influence of Original Powders on the Microstructure and Properties of Thermal Barrier Coatings Deposited by Supersonic Atmospheric Plasma Spraying, Part II: Properties, Ceram. Int., 2013, 39(4), p 4437-4448CrossRefGoogle Scholar
  41. 41.
    R.S. Lima and B.R. Marple, Toward Highly Sintering-Resistant Nanostructured ZrO 2-7 wt.% Y2O3 Coatings for TBC Applications by Employing Differential Sintering, J. Therm. Spray Technol., 2008, 17(5-6), p 846-852CrossRefGoogle Scholar
  42. 42.
    G.R. Li, G.J. Yang, C.X. Li, and C.J. Li, A Comprehensive Mechanism for the Sintering of Plasma-Sprayed Nanostructured Thermal Barrier Coatings, Ceram. Int., 2017, 43(13), p 9600-9615CrossRefGoogle Scholar
  43. 43.
    G. Antou, F. Hlawka, A. Cornet, C. Becker, D. Ruch, and A. Riche, In Situ Laser Remelted Thermal Barrier Coatings: Thermophysical Properties, Surf. Coat. Technol., 2006, 200(20), p 6062-6072CrossRefGoogle Scholar
  44. 44.
    R.E. Taylor, X. Wang, and X. Xu, Thermophysical Properties of Thermal Barrier Coatings, Surf. Coat. Technol., 1999, 120, p 89-95CrossRefGoogle Scholar
  45. 45.
    H. Wang and R.B. Dinwiddie, Reliability of Laser Flash Thermal Diffusivity Measurements of the Thermal Barrier Coatings, J. Therm. Spray Technol., 2000, 9(2), p 210-214CrossRefGoogle Scholar
  46. 46.
    Q. Yu, A. Rauf, N. Wang, and C. Zhou, Thermal Properties of Plasma-Sprayed Thermal Barrier Coating with Bimodal Structure, Ceram. Int., 2011, 37(3), p 1093-1099CrossRefGoogle Scholar
  47. 47.
    S. Paul, A. Cipitria, S.A. Tsipas, and T.W. Clyne, Sintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different Stabilizers, Surf. Coat. Tech., 2009, 203(8), p 1069-1074CrossRefGoogle Scholar
  48. 48.
    F. Cernuschi, P.G. Bison, S. Marinetti, and P. Scardi, Thermophysical Mechanical and Microstructural Characterization of Aged Free-Standing Plasma-Sprayed Zirconia Coatings, Acta Mater., 2008, 56(16), p 4477-4488CrossRefGoogle Scholar
  49. 49.
    G.R. Li, H. Xie, G.J. Yang, G. Liu, C.X. Li, and C.J. Li, A Comprehensive Sintering Mechanism for TBCs-Part I: An Overall Evolution with Two-stage Kinetics, J. Am. Ceram. Soc., 2017, 100(5), p 2176-2189CrossRefGoogle Scholar
  50. 50.
    G.R. Li, H. Xie, G.J. Yang, G. Liu, C.X. Li, and C.J. Li, A Comprehensive Sintering Mechanism for TBCs-Part II: Multiscale Multipoint Interconnection-Enhanced Initial Kinetics, J. Am. Ceram. Soc., 2017, 100(9), p 4240-4251CrossRefGoogle Scholar
  51. 51.
    G.R. Li, G.J. Yang, C.X. Li, and C.J. Li, A Comprehensive Sintering Mechanism for Thermal Barrier Coatings-Part III: Substrate Constraint Effect on Healing of 2D Pores, J. Am. Ceram. Soc., 2018, 101(8), p 3636-3648CrossRefGoogle Scholar
  52. 52.
    G.R. Li, J. Lei, G.J. Yang, C.X.Li Li, and C.J. Li, Substrate-Constrained Effect on the Stiffening Behavior of Lamellar Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2018, 38(6), p 2579-2587CrossRefGoogle Scholar
  53. 53.
    G.R. Li, G.J. Yang, C.X. Li, and C.J. Li, Sintering Characteristics of Plasma-Sprayed TBCs: Experimental Analysis and An Overall Modeling, Ceram. Int., 2018, 44(3), p 2982-2990CrossRefGoogle Scholar
  54. 54.
    D.R. Clarke and S.R. Phillpot, Thermal Barrier Coating Materials, Mater. Today, 2005, 8(6), p 22-29CrossRefGoogle Scholar
  55. 55.
    R. Dutton, R. Wheeler, K.S. Ravichandran, and K. An, Effect of Heat Treatment on the Thermal Conductivity of Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2000, 9(2), p 204-209CrossRefGoogle Scholar
  56. 56.
    N. Wang, C. Zhou, S. Gong, and H. Xu, Heat Treatment of Nanostructured Thermal Barrier Coating, Ceram. Int., 2007, 33(6), p 1075-1081CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Wei-Wei Zhang
    • 1
    • 2
  • Guang-Rong Li
    • 1
  • Qiang Zhang
    • 1
    • 3
  • Guan-Jun Yang
    • 1
  • Guo-Wang Zhang
    • 1
  • Hong-Min Mu
    • 1
  1. 1.State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.School of Materials Science and EngineeringChang’an UniversityXi’anChina
  3. 3.AECC Beijing Institute of Aeronautical MaterialBeijingChina

Personalised recommendations