Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 7, pp 1090–1102 | Cite as

Application of Acoustic Emission Technology for Quantitative Characterization of Plasma-Sprayed Coatings Subjected to Bending Fatigue Tests

  • Jian-nong Jing
  • Li-hong Dong
  • Hai-dou Wang
  • Guo Jin
Peer Reviewed
  • 53 Downloads

Abstract

Plasma-sprayed coatings are widely used in industry, e.g., in applications subject to high wear and corrosion damage, or requiring thermal insulation. However, the failure behavior of such coatings has a great influence on the service safety of mechanical parts. Acoustic emission (AE) has attracted much attention due to its proven usefulness for real-time monitoring of damage evolution and high sensitivity to fracture sources. In this study, the damage evolution behavior of a plasma-sprayed coating subjected to three-point bending fatigue tests was monitored using the AE method. A method combining parameterized, Fourier, and wavelet analysis was used to distinguish the damage modes in the coating. The analysis results revealed two crack modes (surface vertical crack and interface crack) with two different peak frequencies. A finite element method was used to quantify the fracture stress and propagation behavior of cracks, revealing that the thickness of the coating had a strong influence on its spalling.

Keywords

acoustic emission bending fatigue tests finite element method plasma-sprayed coating quantitative assessment Suo–Hutchinson model 

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 51535011 and 51675532) and the Fundamental Research Funds for the Central Universities (No. HEUCF).

References

  1. 1.
    J. Rodríguez, A. Martín, R. Fernández, and J.E. Fernández, An Experimental Study of the Wear Performance of NiCrBSi Thermal Spray Coatings, Wear, 2003, 255, p 950-955CrossRefGoogle Scholar
  2. 2.
    L. Shepeleva, B. Medres, W.D. Kaplan, M. Bamberger, and A. Weisheit, Laser Cladding of Turbine Blades, Surf. Coat. Technol., 2000, 125, p 45-48CrossRefGoogle Scholar
  3. 3.
    A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meierc, and F.S. Pettitc, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46, p 505-553CrossRefGoogle Scholar
  4. 4.
    T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 5, p 401CrossRefGoogle Scholar
  5. 5.
    J.J. Kang, B.S. Xu, H.D. Wang, and C.B. Wang, Competing Failure Mechanism and Life Prediction of Plasma Sprayed Composite Ceramic Coating in Rolling–Sliding Contact Condition, Tribol. Int., 2014, 73, p 128-137CrossRefGoogle Scholar
  6. 6.
    I. Hofinger, J. Möller, M. Bobeth, and K. Raab, Effect of Substrate Surface Roughness on the Adherence of NiCrAlY Thermal Spray Coatings, J. Therm. Spray Technol., 2002, 11, p 387CrossRefGoogle Scholar
  7. 7.
    X.C. Zhang, B.S. Xu, F.Z. Xuan, S.D. Tu, H.D. Wang, and Y.X. Wu, Fatigue Resistance of Plasma-Sprayed CrC–NiCr Cermet Coatings in Rolling Contact, Appl. Surf. Sci., 2008, 254, p 3734-3744CrossRefGoogle Scholar
  8. 8.
    L. Yang, Z.C. Zhong, J. You, Q.M. Zhang, Y.C. Zhou, and W.Z. Tang, Acoustic Emission Evaluation of Fracture Characteristics in Thermal Barrier Coatings under Bending, Surf. Coat. Technol., 2013, 232, p 710-718CrossRefGoogle Scholar
  9. 9.
    M.R. Begley, D.R. Mumm, A.G. Evans, and J.W. Hutchinson, Analysis of a Wedge Impression Test for Measuring the Interface Toughness between Films/Coatings and Ductile Substrates, Acta Mater., 2000, 48, p 3211-3220CrossRefGoogle Scholar
  10. 10.
    M.P.D. Boer and W.W. Gerberich, Microwedge Indentation of the Thin Film Fine Line—I. Mechanics, Acta Mater., 1996, 44, p 3169-3175CrossRefGoogle Scholar
  11. 11.
    Y. Yamazaki, A. Schmidt, and A. Scholz, The Determination of the Delamination Resistance in Thermal Barrier Coating System by Four-Point Bending Tests, Surf. Coat. Technol., 2006, 201, p 744-754CrossRefGoogle Scholar
  12. 12.
    Y.C. Zhou, T. Hashida, and C.Y. Jian, Determination of Interface Fracture Toughness in Thermal Barrier Coating System by Blister Tests, J. Eng. Mater. Trans. ASME, 2003, 125, p 176-182CrossRefGoogle Scholar
  13. 13.
    B.W. Veal, A.P. Paulikas, and P.Y. Hou, Tensile Stress and Creep in Thermally Grown Oxide, Nat. Mater., 2006, 5, p 349CrossRefGoogle Scholar
  14. 14.
    F. Yu and T.D. Bennett, Phase of Thermal Emission Spectroscopy for Properties Measurements of Delaminating Thermal Barrier Coatings, J. Appl. Phys., 2005, 98, p 103501CrossRefGoogle Scholar
  15. 15.
    C. Zhang, C. Zhou, H. Peng, S. Gong, and H. Xu, Influence of Thermal Shock on Insulation Effect of Nano-multilayer Thermal Barrier Coatings, Surf. Coat. Technol., 2007, 201, p 6340-6344CrossRefGoogle Scholar
  16. 16.
    D. Renusch and M. Schütze, Measuring and Modeling the TBC Damage Kinetics by Using Acoustic Emission Analysis, Surf. Coat. Technol., 2007, 202, p 740-744CrossRefGoogle Scholar
  17. 17.
    X.Q. Ma and M. Takemoto, Quantitative Acoustic Emission Analysis of Plasma Sprayed Thermal Barrier Coatings Subjected to Thermal Shock Tests, Mater. Sci. Eng. A Struct., 2001, 308, p 101-110CrossRefGoogle Scholar
  18. 18.
    T.M. Roberts and M. Talebzadeh, Acoustic Emission Monitoring of Fatigue Crack Propagation, J. Constr. Steel Res., 2003, 59, p 695-712CrossRefGoogle Scholar
  19. 19.
    X.Q. Ma, S. Cho, and M. Takemoto, Acoustic Emission Source Analysis of Plasma Sprayed Thermal Barrier Coatings during Four-Point Bend Tests, Surf. Coat. Technol., 2001, 139, p 55-62CrossRefGoogle Scholar
  20. 20.
    R.V. Sagar, B.K.R. Prasad, and S.S. Kumar, An Experimental Study on Cracking Evolution in Concrete and Cement Mortar by the b-Value Analysis of Acoustic Emission Technique, Cem. Concr. Res., 2012, 42, p 1094-1104CrossRefGoogle Scholar
  21. 21.
    D. Drozdenko, J. Bohlen, S. Yi, M. Peter, C. František, and D. Patrik, Investigating a Twinning–Detwinning Process in Wrought Mg Alloys by the Acoustic Emission Technique, Acta Mater., 2016, 110, p 103-113CrossRefGoogle Scholar
  22. 22.
    A. Kucuk, C.C. Berndt, U. Senturk, and R.S. Lima, Influence of Plasma Spray Parameters on Mechanical Properties of Yttria Stabilized Zirconia Coatings, II: Acoustic Emission, Mater. Sci. Eng. A Struct., 2000, 284, p 41-50CrossRefGoogle Scholar
  23. 23.
    I.M.D. Rosa, C. Santulli, and F. Sarasini, Acoustic Emission for Monitoring the Mechanical Behaviour of Natural Fibre Composites: A Literature Review, Compos. Part A Appl. Sci. Manuf., 2009, 40, p 1456-1469CrossRefGoogle Scholar
  24. 24.
    L. Yang, Y.C. Zhou, W.G. Mao, and Q.X. Liu, Acoustic Emission Evaluation of the Fracture Behavior of APS-TBCs Subjecting to Bondcoating Oxidation, Surf. Interface Anal., 2007, 39, p 761-769CrossRefGoogle Scholar
  25. 25.
    L. Yang, Y.C. Zhou, W.G. Mao, and C. Lu, Real-Time Acoustic Emission Testing Based on Wavelet Transform for the Failure Process of Thermal Barrier Coatings, Appl. Phys. Lett., 2008, 93, p 231906CrossRefGoogle Scholar
  26. 26.
    L. Yang, Y.C. Zhou, and C. Lu, Damage Evolution and Rupture Time Prediction in Thermal Barrier Coatings Subjected to Cyclic Heating and Cooling: An Acoustic Emission Method, Acta Mater., 2011, 59, p 6519-6529CrossRefGoogle Scholar
  27. 27.
    P. Seiler, M. Bäker, and J. Rösler, Multi-scale Failure Mechanisms of Thermal Barrier Coating Systems, Comput. Mater. Sci., 2013, 80, p 27-34CrossRefGoogle Scholar
  28. 28.
    X. Li and L. Dong, An Efficient Closed-Form Solution for Acoustic Emission Source Location in Three-Dimensional Structures, AIP Adv., 2014, 4, p 152-160Google Scholar
  29. 29.
    J.G. Ning, L. Chu, and H.L. Ren, A Quantitative Acoustic Emission Study on Fracture Processes in Ceramics Based on Wavelet Packet Decomposition, J. Appl. Phys., 2014, 116, p 3773Google Scholar
  30. 30.
    Y. Sun, J. Li, W. Zhang, and T.J. Wang, Local Stress Evolution in Thermal Barrier Coating System during Isothermal Growth of Irregular Oxide Layer, Surf. Coat. Technol., 2013, 216, p 237-250CrossRefGoogle Scholar
  31. 31.
    Y. Xu and B.G. Mellor, Application of Acoustic Emission to Detect Damage Mechanisms of Particulate Filled Thermoset Polymeric Coatings in Four Point Bend Tests, Surf. Coat. Technol., 2011, 205, p 5478-5482CrossRefGoogle Scholar
  32. 32.
    D.G. Aggelis, D.V. Soulioti, N.M. Barkoula, A.S. Paipetis, and T.E. Matikas, Influence of Fiber Chemical Coating on the Acoustic Emission Behavior of Steel Fiber Reinforced Concrete, Cemt. Concr. Compos., 2012, 34, p 62-67CrossRefGoogle Scholar
  33. 33.
    C.K. Chui and C. Heil, An Introduction to Wavelets, 1st ed., Academic, New York, 1992Google Scholar
  34. 34.
    Z. Suo and J.W. Hutchinson, Interface Crack between Two Elastic Layers, Int. J. Fract., 1990, 43, p 1-18CrossRefGoogle Scholar
  35. 35.
    S.R. Choi, D. Zhu, and R.A. Miller, Fracture Behavior under Mixed-Mode Loading of Ceramic Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures, Eng. Fract. Mech., 2005, 72, p 2144-2158CrossRefGoogle Scholar
  36. 36.
    J. Chen and S.J. Bull, Approaches to Investigate Delamination and Interfacial Toughness in Coated Systems: An Overview, J. Phys. D Appl. Phys., 2011, 44, p 034001CrossRefGoogle Scholar
  37. 37.
    M.G.R. Sause, F. Haider, and S. Horn, Quantification of Metallic Coating Failure on Carbon Fiber Reinforced Plastics Using Acoustic Emission, Surf. Coat. Technol., 2009, 204, p 300-308CrossRefGoogle Scholar
  38. 38.
    H. Li, K.A. Khor, and P. Cheang, Young’s Modulus and Fracture Toughness Determination of High Velocity Oxy-Fuel-Sprayed Bioceramic Coatings, Surf. Coat. Technol., 2002, 155, p 21-32CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.College of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.National Key Laboratory for RemanufacturingArmy Academy of Armored ForcesBeijingChina

Personalised recommendations