Journal of Thermal Spray Technology

, Volume 27, Issue 7, pp 1194–1203 | Cite as

Features of Coatings Obtained by Supersonic Laser Deposition

  • A.I. GorunovEmail author
Peer Reviewed


The three types of coatings that can be deposited by supersonic laser deposition, namely coatings built without the melting of the processed powder particles, coatings built from molten particles and coatings made from molten particles and with solid particles embedded in the coating, are discussed. For instance, with no melting of the powder material, a titanium alloy coating without transformation of the structure and with a uniform distribution of the chemical elements in the coating cross-section was obtained. Self-fluxing coatings (NiCrCBSiFe) with high hardness were achieved by melting the powder and mixing it with the substrate. The mixing of the coating metal with the substrate metal led to a significant increase in the concentration of the main alloying elements in the coating–substrate interface. X-ray diffraction analysis also showed that the mixing of the NiCrCBSiFe coating with a medium-carbon steel substrate led to the formation of new FexNi phases, while their concentration decreased through coating thickness.


chemical composition microstructure nickel alloy coating supersonic laser deposition titanium alloy 



The author acknowledges support from the Ministry of Education of the Russian Federation for supporting the research Project No 9.3236.2017/4.6.


  1. 1.
    A.P. Alkhimov, S.V. Klinkon, V.F. Kosarev, and A.N. Papyrin, Gasdynamicspraying. Study Plane Supersonic Two-Phase Jet, J. Appl. Mech. Tech. Phys., 1977, 38(2), p 177Google Scholar
  2. 2.
    F. Luo, A. Cockburn, D. Cai, M. Sparks, Y. Lu, C. Ding, R. Langford, W. O’Neill, J. Yao, and R. Liu, Simulation Analysis of Stellite 6®Particle Impact on Steel Substrate in Supersonic Laser Deposition Process, J. Therm. Spray Technol., 2015, 24(3), p 378-393CrossRefGoogle Scholar
  3. 3.
    F. Luo, A. Cockburn, R. Lupoi, M. Sparkes, and W. O’Neill, Performance Comparison of Stellite 6 Deposited on Steel Using Supersonic Laser Deposition and Laser Cladding, Surf. Coat. Technol., 2012, 212, p 119-127CrossRefGoogle Scholar
  4. 4.
    F. Luo, R. Lupoi, A. Cockburn, M. Sparkes, and W. O’Neill, Characteristics of Stellite 6 Deposited by Supersonic Laser Deposition Under Optimized Parameters, J. Iron. Steel Res. Int., 2013, 20(2), p 52-57CrossRefGoogle Scholar
  5. 5.
    J. Yao, Z. Li, B. Li, L. Yang, and J. Yaoet, Characteristics and Bonding Behavior of Stellite 6 Alloy Coating Processed with Supersonic Laser Deposition, J. Alloys Compd., 2016, 661, p 526-534CrossRefGoogle Scholar
  6. 6.
    H. Ren, X. Tian, D. Liu, J. Liu, and H. Wang, Microstructural Evolution and Mechanical Properties of Laser Melting Deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Titanium Alloy, Trans. Nonferrous Met. Soc. China, 2015, 25, p 1856-1864CrossRefGoogle Scholar
  7. 7.
    R.E. Blose, B.H. Walker, R.M. Walker, and S.H. Froes, New Opportunities to Use Cold Spray Process for Applying Additive Features to Titanium Alloys, Powder Rep., 2006, 61, p 30-37CrossRefGoogle Scholar
  8. 8.
    S.H. Zahiri, C.L. Antonio, and M. Jahedi, Elimination of Porosity in Directly Fabricated Titanium Via Cold Gas Dynamic Spraying, J. Mater. Process. Technol., 2009, 209, p 922-929CrossRefGoogle Scholar
  9. 9.
    D. Goldbaum, J. Ajaja, R.R. Chromik, W. Wong, S. Yue, E. Irissou, and J.-G. Legoux, Mechanical Behavior of Ti Cold Spray Coatings Determined By a Multi-Scale Indentation Method, Mater. Sci. Eng. A, 2011, 530, p 253-265CrossRefGoogle Scholar
  10. 10.
    R.S. Lima, A. Kucuk, C.C. Berndt, J. Karthikeyan, C.M. Kay, and J. Lindeman, Deposition Efficiency, Mechanical Properties and Coating Roughness in Cold-Sprayed Titanium, J. Mater. Sci. Lett., 2002, 21, p 1687-1689CrossRefGoogle Scholar
  11. 11.
    T. Marrocco, D.G. McCartney, P.H. Shipway, and A.J. Sturgeon, Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Therm. Spray Technol., 2006, 15, p 263-272CrossRefGoogle Scholar
  12. 12.
    S. Grigoriev, A. Okunkova, A. Sova, P. Bertrand, and I. Smurov, Cold Spraying: From Process Fundamentals Towards Advanced Applications, Surf. Coat. Technol., 2015, 268, p 77-84CrossRefGoogle Scholar
  13. 13.
    M. Tewolde, G. Fu, D.J. Hwang, L. Zuo, S. Sampath, and J.P. Longtin, Thermoelectric Device Fabrication Using Thermal Spray and Laser Micromachining, J. Therm. Spray Technol., 2016, 25(3), p 431-440CrossRefGoogle Scholar
  14. 14.
    R.C. Seshadri, G. Dwivedi, V. Viswanathan, and S. Sampath, Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements, J. Therm. Spray Technol., 2016, 25(8), p 1666-1683CrossRefGoogle Scholar
  15. 15.
    R. Lupoi, M. Sparkes, A. Cockburn, and W. O’Neill, High Speed Titanium Coatings by Supersonic Laser Deposition, Mater. Lett., 2011, 65, p 3205-3207CrossRefGoogle Scholar
  16. 16.
    N. Bala, H. Singh, and S. Prakash, Performance of Cold Sprayed Ni Based Coatings in Actual Boiler Environment, Surf. Coat. Technol., 2017, 318(25), p 50-61CrossRefGoogle Scholar
  17. 17.
    W. Sun, A.W.Y. Tan, N.W. Khun, I. Marinescu, and E. Liua, Effect of Substrate Surface Condition on Fatigue Behavior of Cold Sprayed Ti6Al4V Coatings, Surf. Coat. Technol., 2017, 320(25), p 452-457CrossRefGoogle Scholar
  18. 18.
    R. Singh, K.-H. Rauwald, E. Wessel, G. Mauer, S. Schruefer, A. Barthd, S. Wilson, and R. Vassena, Effects of Substrate Roughness and Spray-Angle on Deposition Behavior of Cold-Sprayed Inconel 718, Surf. Coat. Technol., 2017, 319, p 249-259CrossRefGoogle Scholar
  19. 19.
    F. Luo, A. Cockburn, M. Sparkes, R. Lupoi, Z. Chen, W. O’Neill, J. Yao, and R. Liu, Performance Characterization of Ni60-WC Coating on Steel Processed with Supersonic Laser Deposition, Def. Technol., 2015, 11, p 35-47CrossRefGoogle Scholar
  20. 20.
    Y. Zhou, G. Ma, and H. Wang, Microstructures and Tribological Properties of Fe-Based Amorphous Metallic Coatings Deposited via Supersonic Plasma Spraying, J. Therm. Spray Technol., 2017, 26(6), p 1257-1267CrossRefGoogle Scholar
  21. 21.
    A.I. Gorunov and A.K. Gilmutdinov, Investigation of Coatings of Austenitic Steels Produced by Supersonic Laser Deposition, Opt. Laser Technol., 2017, 88, p 157-165CrossRefGoogle Scholar
  22. 22.
    J.H. Yao, L.J. Yang, B. Li, Q.L. Zhang, and Z.H. Li, Deposition Characteristics and Microstructure of a Ni60-Ni Composite Coating Produced by Supersonic Laser Deposition, Lasers Eng., 2017, 36(1-3), p 117-131Google Scholar
  23. 23.
    J. Yao, L. Yang, B. Li, Z. Li, and J. Yaoet, Characteristics and Performance of Hard Ni60 Alloy Coating Produced with Supersonic Laser Deposition Technique, Mater. Design, 2015, 83, p 26-35CrossRefGoogle Scholar
  24. 24.
    L. Yang, B. Li, J. Yao, Z. Li, and L. Yanget, Effects of Diamond Size on the Deposition Characteristic and Tribological Behavior of Diamond/Ni60 Composite Coating Prepared By Supersonic Laser Deposition, Diam. Relat. Mater., 2015, 58, p 139-148CrossRefGoogle Scholar
  25. 25.
    B. Li, J. Yao, Q. Zhang, Z. Li, and L. Yanget, Microstructure and Tribological Performance of Tungsten Carbide Reinforced Stainless Steel Composite Coatings By Supersonic Laser Deposition, Surf. Coat. Technol., 2015, 275, p 58-68CrossRefGoogle Scholar
  26. 26.
    L. Yuan, F. Luo, J. Yao, L. Yuan, and F. Luo, Deposition Behavior At Different Substrate Temperatures by Using Supersonic Laser Deposition, J. Iron Steel Res. Int., 2013, 20(10), p 87-93CrossRefGoogle Scholar
  27. 27.
    M. Jones, A. Cockburn, R. Lupoi, M. Sparkes, and W. O’Neill, Solid-State Manufacturing of Tungsten Deposits Onto Molybdenum Substrates with Supersonic Laser Deposition, Mater. Lett., 2014, 134, p 295-297CrossRefGoogle Scholar
  28. 28.
    V.I. Kalita, V.V. Yarkin, V.P. Bagmutov, S.N. Parshev, I.N. Zakharov, A.V. Kasimtsev, G.U. Lubman, D.I. Komlev, and V.I. Mamonov, Formation of Coatings with Nanostructures and Amorphous Structures, Russ. Metall. (Metally), 2007, 2007(6), p 534-539CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Kazan National Research Technical University Named After A.N. Tupolev–KAIKazanRussia

Personalised recommendations