Journal of Thermal Spray Technology

, Volume 27, Issue 7, pp 1103–1122 | Cite as

Microstructural Characteristics and Residual Stresses in Arc-Sprayed Cermet Coatings Using Different Carbide Grain Size Fractions

  • W. Tillmann
  • L. HagenEmail author
  • W. Luo
  • A. B. Chehreh
Peer Reviewed


Different studies have emphasized the technological relevance of residual stresses in engineered surfaces, such as thermally sprayed coatings, and their effect on the fracture and fatigue behavior. In arc-sprayed coatings, the microstructural characteristics and resulting residual stresses are determined primarily by the inherent process characteristics and feedstock material. With the scope of this work, a study on the residual stress field in coatings formed by an arc spraying process for different electric parameter settings has been carried out using different wire configurations. Thus, iron-based cored wires with different grain-sized tungsten carbides as filler material were used as feedstock. The coatings are mainly composed of eutectic carbides, and eta carbides such as M6C, M12C, or M23C and some iron-rich oxide phases, as well as characterized by an inhomogeneous, lamellar microstructure. The results demonstrated that the magnitude of the residual stresses in the coating depends on the carbide grain size fraction used as filling for cored wires. A smaller carbide grain size leads to a more pronounced dissolution of eutectic carbides, resulting in the formation of eta carbides, which in turn is accompanied by decreased tensile residual stresses across the coating. With respect to the spray parameter settings, reduced tensile residual stresses are observed when an increased voltage is applied, which can be attributed to phase evolution phenomena during spraying and thermal effects on the substrate-coating system.


arc spraying carbide grain size hole drilling method residual stresses tungsten carbide 



The authors gratefully acknowledge the financial support of the DFG (German Research Foundation) within the Collaborative Research Centre SFB 708 subprojects A1 and C2. The contributions of DURUM Verschleissschutz GmbH are gratefully acknowledged for their support in providing the feedstock. The authors would like to thank the DELTA machine group for providing synchrotron radiation.


  1. 1.
    G. Bolelli, L.-M. Berger, T. Börner, H. Koivuluoto, L. Lusvarghi, C. Lyphout, N. Markocsan, V. Matikainen, P. Nylén, P. Sassatelli, R. Trache, and P. Vuoristo, Tribology of HVOF- and HVAF-Sprayed WC-10Co4Cr Hardmetal Coatings: A Comparative Assessment, Surf. Coat. Technol., 2015, 265, p 125-144CrossRefGoogle Scholar
  2. 2.
    S.M. Nahvi and M. Jafari, Microstructural and Mechanical Properties of Advanced HVOF-Sprayed WC-Based Cermet Coatings, Surf. Coat. Technol., 2016, 286, p 95-102CrossRefGoogle Scholar
  3. 3.
    A. Lekatou, D. Sioulas, A.E. Karantzalis, and D. Grimanelis, A Comparative Study on the Microstructure and Surface Property Evaluation of Coatings Produced from Nanostructured and Conventional WC-Co Powders HVOF-Sprayed on Al7075, Surf. Coat. Technol., 2015, 276, p 539-556CrossRefGoogle Scholar
  4. 4.
    E. Sánchez, E. Bannier, M.D. Salvador, V. Bonache, J.C. García, J. Morgiel, and J. Grzonka, Microstructure and Wear Behavior of Conventional and Nanostructured Plasma-Sprayed WC-Co Coatings, J. Therm. Spray Tech, 2010, 19(5), p 964-974CrossRefGoogle Scholar
  5. 5.
    X.-Q. Zhao, H.-D. Zhou, and J.-M. Chen, Comparative Study of the Friction and Wear Behavior of Plasma Sprayed Conventional and Nanostructured WC-12%Co Coatings on Stainless Steel, Mater. Sci. Eng. A, 2006, 431(1-2), p 290-297CrossRefGoogle Scholar
  6. 6.
    J.O. Berghaus, B. Marple, and C. Moreau, Suspension Plasma Spraying of Nanostructured WC-12Co Coatings, J. Therm. Spray Technol., 2006, 15(4), p 676-681CrossRefGoogle Scholar
  7. 7.
    P.H. Shipway, D.G. McCartney, and T. Sudaprasert, Sliding Wear Behaviour of Conventional and Nanostructured HVOF Sprayed WC–Co Coatings, Wear, 2005, 259(7-12), p 820-827CrossRefGoogle Scholar
  8. 8.
    N. Espallargas, J. Berget, J.M. Guilemany, A.V. Benedetti, and P.H. Suegama, Cr3C2–NiCr and WC–Ni Thermal Spray Coatings As Alternatives to Hard Chromium For Erosion-Corrosion Resistance, Surf. Coat. Technol., 2008, 202(8), p 1405-1417CrossRefGoogle Scholar
  9. 9.
    A.P. Newbery, P.S. Grant, and R.A. Neiser, The Velocity and Temperature of Steel Droplets During Electric Arc Spraying, Surf. Coat. Technol., 2005, 195(1), p 91-101CrossRefGoogle Scholar
  10. 10.
    I. Gedzevicius and A.V. Valiulis, Analysis of Wire Arc Spraying Process Variables on Coatings Properties, J. Mater. Process. Technol., 2006, 175(1-3), p 206-211CrossRefGoogle Scholar
  11. 11.
    P. Sheppard and H. Koiprasert, Effect of W Dissolution in NiCrBSi–WC and NiBSi–WC Arc Sprayed Coatings on Wear Behaviors, Wear, 2014, 317(1-2), p 194-200CrossRefGoogle Scholar
  12. 12.
    P. Niranatlumpong and H. Koiprasert, Phase Transformation of NiCrBSi–WC and NiBSi–WC Arc Sprayed Coatings, Surf. Coat. Technol., 2011, 206(2-3), p 440-445CrossRefGoogle Scholar
  13. 13.
    D.-Y. He, B.-Y. Fu, J.-M. Jiang, and X.-Y. Li, Microstructure and Wear Performance of Arc Sprayed Fe-FeB-WC Coatings, J. Therm. Spray Technol., 2008, 17(5-6), p 757-761CrossRefGoogle Scholar
  14. 14.
    B. Xu, Z. Zhu, S. Ma, W. Zhang, and W. Liu, Sliding Wear Behavior of Fe–Al and Fe–Al/WC Coatings Prepared By High Velocity Arc Spraying, Wear, 2004, 257(11), p 1089-1095CrossRefGoogle Scholar
  15. 15.
    W. Tillmann, W. Luo, and U. Selvadurai, Wear Analysis of Thermal Spray Coatings on 3D Surfaces, J. Therm. Spray Technol., 2014, 23(1-2), p 245-251CrossRefGoogle Scholar
  16. 16.
    J. Matejicek and S. Sampath, Intrinsic Residual Stresses in Single Splats Produced By Thermal Spray Processes, Acta Mater., 2001, 49(11), p 1993-1999CrossRefGoogle Scholar
  17. 17.
    X. Zhang, M. Watanabe, and S. Kuroda, Effects of Processing Conditions on the Mechanical Properties and Deformation Behaviors of Plasma-Sprayed Thermal Barrier Coatings: Evaluation of Residual Stresses and Mechanical Properties of Thermal Barrier Coatings on the Basis of In Situ Curvature Measurement Under a Wide Range of Spray Parameters, Acta Mater., 2013, 61(4), p 1037-1047CrossRefGoogle Scholar
  18. 18.
    P. Scardi, M. Leoni, and L. Bertamini, Residual Stresses in Plasma Sprayed Partially Stabilised Zirconia TBCs: Influence of the Deposition Temperature, Thin Solid Films, 1996, 278(1-2), p 96-103CrossRefGoogle Scholar
  19. 19.
    Y.Y. Santana, P.O. Renault, M. Sebastiani, J.G. La Barbera, J. Lesage, E. Bemporad, E. Le Bourhis, E.S. Puchi-Cabrera, and M.H. Staia, Characterization and Residual Stresses of WC–Co Thermally Sprayed Coatings, Surf. Coat. Technol., 2008, 202(18), p 4560-4565CrossRefGoogle Scholar
  20. 20.
    Y.Y. Santana, J.G. La Barbera-Sosa, M.H. Staia, J. Lesage, E.S. Puchi-Cabrera, D. Chicot, and E. Bemporad, Measurement of Residual Stress in Thermal Spray Coatings By the Incremental Hole Drilling Method, Surf. Coat. Technol., 2006, 201(5), p 2092-2098CrossRefGoogle Scholar
  21. 21.
    S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66CrossRefGoogle Scholar
  22. 22.
    J. Pina, A. Dias, and J. Lebrun, Study By X-Ray Diffraction and Mechanical Analysis of the Residual Stress Generation During Thermal Spraying, Mater. Sci. Eng. A, 2003, 347(1-2), p 21-31CrossRefGoogle Scholar
  23. 23.
    Y. Chen, X. Liang, Y. Liu, and B. Xu, Prediction of Residual Stresses in Thermally Sprayed Steel Coatings Considering the Phase Transformation Effect, Mater. Des., 2010, 31(8), p 3852-3858CrossRefGoogle Scholar
  24. 24.
    W. Węglewski, M. Basista, A. Manescu, M. Chmielewski, K. Pietrzak, and T. Schubert, Effect of Grain Size on Thermal Residual Stresses and Damage in Sintered Chromium-Alumina Composites: Measurement and Modeling, Compos. B Eng., 2014, 67, p 119-124CrossRefGoogle Scholar
  25. 25.
    R. Gadow, M.J. Riegert-Escribano, and M. Buchmann, Residual Stress Analysis in Thermally Sprayed Layer Composites, Using the Hole Milling and Drilling Method, J. Therm. Spray Technol., 2005, 14(1), p 100-108CrossRefGoogle Scholar
  26. 26.
    O. Sicot, X.L. Gong, A. Cherouat, and J. Lu, Influence of Experimental Parameters on Determination of Residual Stress Using the Incremental Hole-Drilling Method, Compos. Sci. Technol., 2004, 64(2), p 171-180CrossRefGoogle Scholar
  27. 27.
    G. Montay, A. Cherouat, J. Lu, N. Baradel, and L. Bianchi, Development of the High-Precision Incremental-Step Hole-Drilling Method For the Study of Residual Stress in Multi-Layer Materials: Influence of Temperature and Substrate on ZrO2–Y2O3 8 wt% Coatings, Surf. Coat. Technol., 2002, 155(2-3), p 152-160CrossRefGoogle Scholar
  28. 28.
    M. Wenzelburger, D. López, and R. Gadow, Methods and Application of Residual Stress Analysis on Thermally Sprayed Coatings and Layer Composites, Surf. Coat. Technol., 2006, 201(5), p 1995-2001CrossRefGoogle Scholar
  29. 29.
    H. Lille, J. Koo, A. Rybchikov, S. Toropov, R. Veinthal, and A. Surzhenkov, Eds., Comparative Analysis of Residual Stresses in Flame-Sprayed and Electrodeposited Coatings Using Substrate Deformation and Hole-Drilling Methods, 2010Google Scholar
  30. 30.
    J. Münker, Untersuchung und Weiterentwicklung der Auswertemethoden für teilzerstörende Eigenspannungsmessverfahren, Universität-Gesamthochschule Siegen, 1993 (in German)Google Scholar
  31. 31.
    T. Schwarz and H. Kockelmann, Ein Für Viele Anwendungsbereiche Optimales Verfahren Zur Experimentellen Ermittlung Von Eigenspannungen, 1993, 29, p 33-38 (in German)Google Scholar
  32. 32.
    H.d.V. Lovelock, Powder/Processing/Structure Relationships in WC-Co Thermal Spray Coatings: A Review of the Published Literature, J. Therm. Spray Technol., 1998, 7(3), p 357-373CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Federation of European Producers of Abrasives, “FEPA Grains Standards.
  35. 35.
    C. Krywka, C. Sternemann, M. Paulus, N. Javid, R. Winter, A. Al-Sawalmih, S. Yi, D. Raabe, and M. Tolan, The Small-Angle and Wide-Angle X-Ray Scattering Set-Up at Beamline Bl9 of Delta, J. Synchrotron Radiat., 2007, 14(Pt 3), p 244-251CrossRefGoogle Scholar
  36. 36.
    A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, and D. Hausermann, Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan, High Press. Res., 1996, 14(4-6), p 235-248CrossRefGoogle Scholar
  37. 37.
    W. Tillmann, U. Selvadurai, and W. Luo, Measurement of the Young’s Modulus of Thermal Spray Coatings By Means of Several Methods, J. Therm. Spray Technol., 2013, 22(2-3), p 290-298CrossRefGoogle Scholar
  38. 38.
    German Institute for Standardization, Mechanische Eigenschaften Monolithischer Keramik Bei Raumtemperatur (Mechanical Properties of Monolithic Ceramics at Room Temperature), DIN EN 843-2, German Institute for Standardization, 2006 (in German).Google Scholar
  39. 39.
    H. Czichos, T. Saito, and L.R. Smith, Springer Handbook of Materials Measurement Methods, Springer, Berlin, 2006CrossRefGoogle Scholar
  40. 40.
  41. 41.
    V. Boronenkov and Y. Korobov, Fundamentals of Arc Spraying: Physical and Chemical Regularities, Springer, Berlin, 2016CrossRefGoogle Scholar
  42. 42.
    U.C. Jindal, Experimental Stress Analysis, Dorling Kindersley, 2013.Google Scholar
  43. 43.
    A.P. Newbery and P.S. Grant, Large Arc Voltage Fluctuations and Droplet Formation in Electric Arc Wire Spraying, Powder Metall., 2013, 46(3), p 229-235CrossRefGoogle Scholar
  44. 44.
    J. Wilden, J.P. Bergmann, S. Jahn, S. Knapp, F. van Rodijnen, and G. Fischer, Investigation About the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties, J. Therm. Spray Technol., 2007, 16(5-6), p 759-767CrossRefGoogle Scholar
  45. 45.
    W. Tillmann, E. Vogli, and M. Abdulgader, Asymmetric Melting Behavior in Twin Wire Arc Spraying With Cored Wires, J. Therm. Spray Technol., 2008, 17(5-6), p 974-982CrossRefGoogle Scholar
  46. 46.
    A. Pourmousa, J. Mostaghimi, A. Abedini, and S. Chandra, Particle Size Distribution in a Wire-Arc Spraying System, J. Therm. Spray Technol., 2005, 14(4), p 502-510CrossRefGoogle Scholar
  47. 47.
    I.-T. Baumann, Hochverschleißfeste Und Konturnahe Werkzeugoberflächen Durch Hochgeschwindigkeitsflammspritzverfahren, Vulkan-Verl., 2012.Google Scholar
  48. 48.
    D.V. Suetin, I.R. Shein, and A.L. Ivanovskii, Structural, Electronic and Magnetic Properties of Η Carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from First Principles Calculations, Physica B, 2009, 404(20), p 3544-3549CrossRefGoogle Scholar
  49. 49.
    Y. Li, Y. Gao, Z. Fan, B. Xiao, Q. Yue, T. Min, and S. Ma, First-Principles Study on the Stability and Mechanical Property of Eta M3W3C (M = Fe Co, Ni) Compounds, Physica B, 2010, 405(3), p 1011-1017CrossRefGoogle Scholar
  50. 50.
    Y. Liu, Y. Jiang, R. Zhou, and J. Feng, First-Principles Calculations of the Mechanical and Electronic Properties of Fe–W–C Ternary Compounds, Comput. Mater. Sci., 2014, 82, p 26-32CrossRefGoogle Scholar
  51. 51.
    A.M. Do Nascimento, V. Ocelík, M. Ierardi, and J. de Hosson, Wear Resistance of WCp/Duplex Stainless Steel Metal Matrix Composite Layers Prepared By Laser Melt Injection, Surf. Coat. Technol., 2008, 202(19), p 4758-4765CrossRefGoogle Scholar
  52. 52.
    A.M. Do Nascimento, V. Ocelík, M.C.F. Ierardi, and J.Th.M. de Hosson, Microstructure of Reaction Zone in WCp/Duplex Stainless Steels Matrix Composites Processing By Laser Melt Injection, Surf. Coat. Technol., 2008, 202(10), p 2113-2120CrossRefGoogle Scholar
  53. 53.
    R. Zhou, Y. Jiang, and D. Lu, The Effect of Volume Fraction of WC Particles on Erosion Resistance of WC Reinforced Iron Matrix Surface Composites, Wear, 2003, 255(1-6), p 134-138CrossRefGoogle Scholar
  54. 54.
    S. Zhou and X. Dai, Microstructure Evolution of Fe-Based WC Composite Coating Prepared By Laser Induction Hybrid Rapid Cladding, Appl. Surf. Sci., 2010, 256(24), p 7395-7399CrossRefGoogle Scholar
  55. 55.
    A.H. Dent, S. Depalo, and S. Sampath, Examination of the Wear Properties of HVOF Sprayed Nanostructured and Conventional WC-Co Cermets With Different Binder Phase Contents, J. Therm. Spray Technol., 2002, 11(4), p 551-558CrossRefGoogle Scholar
  56. 56.
    M. Xie, S. Zhang, and M. Li, Comparative Investigation on HVOF Sprayed Carbide-Based Coatings, Appl. Surf. Sci., 2013, 273, p 799-805CrossRefGoogle Scholar
  57. 57.
    C.-J. Li and G.-J. Yang, Relationships Between Feedstock Structure, Particle Parameter, Coating Deposition, Microstructure and Properties For Thermally Sprayed Conventional and Nanostructured WC–Co, Int. J. Refract Metal Hard Mater., 2013, 39, p 2-17CrossRefGoogle Scholar
  58. 58.
    W. Tillmann, D. Stangier, L. Hagen, P. Schröder, and M. Krabiell, Influence of the WC Grain Size on the Properties of PVD/HVOF Duplex Coatings, Surf. Coat. Technol. 2017, 328, p 326–334CrossRefGoogle Scholar
  59. 59.
    D.A. Stewart, P.H. Shipway, and D.G. McCartney, Abrasive Wear Behaviour of Conventional and Nanocomposite HVOF-Sprayed WC–Co Coatings, Wear, 1999, 225-229, p 789-798CrossRefGoogle Scholar
  60. 60.
    Y. Qiao, T.E. Fischer, and A. Dent, The Effects of Fuel Chemistry and Feedstock Powder Structure on the Mechanical and Tribological Properties of HVOF Thermal-Sprayed WC–Co Coatings with Very Fine Structures, Surf. Coat. Technol., 2003, 172(1), p 24-41CrossRefGoogle Scholar
  61. 61.
    Q. Yang, T. Senda, and A. Ohmori, Effect of Carbide Grain Size on Microstructure and Sliding Wear Behavior of HVOF-Sprayed WC–12% Co Coatings, Wear, 2003, 254(1-2), p 23-34CrossRefGoogle Scholar
  62. 62.
    S. Kaierle, A. Barroi, C. Noelke, J. Hermsdorf, L. Overmeyer, and H. Haferkamp, Review on Laser Deposition Welding: From Micro to Macro, Phys. Procedia, 2012, 39, p 336-345CrossRefGoogle Scholar
  63. 63.
    S. Huang, M. Samandi, and M. Brandt, Abrasive Wear Performance and Microstructure of Laser Clad WC/Ni Layers, Wear, 2004, 256(11-12), p 1095-1105CrossRefGoogle Scholar
  64. 64.
    M. Jones and U. Waag, The Influence of Carbide Dissolution on the Erosion-Corrosion Properties of Cast Tungsten Carbide/Ni-Based PTAW Overlays, Wear, 2011, 271(9-10), p 1314-1324CrossRefGoogle Scholar
  65. 65.
    P. Borm, F.C. Klaessig, T.D. Landry, B. Moudgil, J. Pauluhn, K. Thomas, R. Trottier, and S. Wood, Research Strategies for Safety Evaluation of Nanomaterials, Part V: Role of Dissolution in Biological Fate and Effects of Nanoscale Particles, Toxicol. Sci., 2006, 90(1), p 23-32CrossRefGoogle Scholar
  66. 66.
    H. Berns and W. Theisen, Eisenwerkstoffe - Stahl Und Gusseisen, 4th ed., Springer, Berlin, 2008 (in Germany)Google Scholar
  67. 67.
    T. Dash and B.B. Nayak, Preparation of WC–W2C Composites By Arc Plasma Melting and Their Characterisations, Ceram. Int., 2013, 39(3), p 3279-3292CrossRefGoogle Scholar
  68. 68.
    T. Gerthsen, Anorganische Chemie Für Werkstoffe Und Verfahren, Technische Informationsbibliothek u. Universitätsbibliothek; Univ.-Verl., 2006.Google Scholar
  69. 69.
    Q.Q. Ren, J.L. Fan, Y. Han, and H.R. Gong, Structural, Thermodynamic, Mechanical, and Magnetic Properties of Few System, J. Appl. Phys., 2014, 116(9), p 93909CrossRefGoogle Scholar
  70. 70.
    Y. Liu, Y. Jiang, R. Zhou, and J. Feng, Mechanical Properties and Chemical Bonding Characteristics of WC and W2C Compounds, Ceram. Int., 2014, 40(2), p 2891-2899CrossRefGoogle Scholar
  71. 71.
    H. Taimatsu, S. Sugiyama, and Y. Kodaira, Synthesis of W2C By Reactive Hot Pressing and Its Mechanical Properties, Mater. Trans., 2008, 49(6), p 1256-1261CrossRefGoogle Scholar
  72. 72.
    M. Yandouzi, L. Ajdelsztajn, and B. Jodoin, WC-Based Composite Coatings Prepared By the Pulsed Gas Dynamic Spraying Process: Effect of the feedstock powders, Surf. Coat. Technol., 2008, 202(16), p 3866-3877CrossRefGoogle Scholar
  73. 73.
    M. Boccalini Jr., A. Corrêa, and H. Goldenstein, Rare Earth Metal Induced Modification of γ-M2C, γ-M6C, and γ-MC Eutectics in as Cast M2 High Speed Steel, Mater. Sci. Technol., 2013, 15(6), p 621-626CrossRefGoogle Scholar
  74. 74.
    M. Riabkina-Fishman, E. Rabkin, P. Levin, N. Frage, M. Dariel, A. Weisheit, R. Galun, and B. Mordike, Laser Produced Functionally Graded Tungsten Carbide Coatings on M2 High-Speed Tool Steel, Mater. Sci. Eng. A, 2001, 302(1), p 106-114CrossRefGoogle Scholar
  75. 75.
    S. Sampath, X. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, and A. Vaidya, Role of Thermal Spray Processing Method on the Microstructure, Residual Stress and Properties of Coatings: An integrated study for Ni–5 wt%Al bond coats, Mater. Sci. Eng. A, 2004, 364(1-2), p 216-231CrossRefGoogle Scholar
  76. 76.
    A.M. Kamara and K. Davey, A Numerical and Experimental Investigation into Residual Stress in Thermally Sprayed Coatings, Int. J. Solids Struct., 2007, 44(25-26), p 8532-8555CrossRefGoogle Scholar
  77. 77.
    F.A. Kandil, D. Lord, and A.T. Fry, 2001, A Review of Residual Stress Measurement Methods a Guide to Technique Selection, NPL Report MATC(A)04.Google Scholar
  78. 78.
    B. Qiang, Y. Li, C. Yao, X. Wang, and Y. Gu, Through-Thickness Distribution of Residual Stresses in Q345qD Butt-Welded Steel Plates, J. Mater. Process. Technol., 2018, 251, p 54-64CrossRefGoogle Scholar
  79. 79.
    Z. Zhu, Y. Li, X. Wang, and H. Chen, Surface Treatment to Reduce and Redistribute Residual-Stresses in A7N01 Weld by Micro-Arc Oxidation, J. Mater. Process. Technol., 2016, 231, p 248-253CrossRefGoogle Scholar
  80. 80.
    W. Liang, H. Murakawa, and D. Deng, Investigation of Welding Residual Stress Distribution in a Thick-Plate Joint with an Emphasis on the Features Near Weld End-Start, Mater. Des., 2015, 67, p 303-312CrossRefGoogle Scholar
  81. 81.
    S. Li, S. Ren, Y. Zhang, D. Deng, and H. Murakawa, Numerical Investigation of Formation Mechanism of Welding Residual Stress in P92 Steel Multi-pass Joints, J. Mater. Process. Technol., 2017, 244, p 2240-2252Google Scholar
  82. 82.
    M. Peel, A. Steuwer, M. Preuss, and P.J. Withers, Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction Stir Welds, Acta Mater., 2003, 51(16), p 4791-4801CrossRefGoogle Scholar
  83. 83.
    A.P. Reynolds, W. Tang, T. Gnaupel-Herold, and H. Prask, Structure, Properties, and Residual Stress of 304L Stainless Steel Friction Stir Welds, Scr. Mater., 2003, 48(9), p 1289-1294CrossRefGoogle Scholar
  84. 84.
    C. Bühr, B. Ahmad, P.A. Colegrove, A.R. McAndrew, H. Guo, and X. Zhang, Prediction of Residual Stress Within Linear Friction Welds Using a Computationally Efficient Modelling Approach, Mater. Des., 2018, 139, p 222-233CrossRefGoogle Scholar
  85. 85.
    M. Junaid, F.N. Khan, N. Bakhsh, M.N. Baig, and K. Rahman, Study of Microstructure, Mechanical Properties and Residual Stresses in Full Penetration Electron Beam Welded Ti-5Al-2.5Sn Alloy Sheet, Mater. Des., 2018, 139, p 198-211CrossRefGoogle Scholar
  86. 86.
    H. Alipooramirabad, A. Paradowska, R. Ghomashchi, A. Kotousov, and M. Reid, Quantification of Residual Stresses in Multi-pass Welds Using Neutron Diffraction, J. Mater. Process. Technol., 2015, 226, p 40-49CrossRefGoogle Scholar
  87. 87.
    H. Wang, T. Webb, and J.W. Bitler, Study of Thermal Expansion and Thermal Conductivity of Cemented WC–Co Composite, Int. J. Refract Metal Hard Mater., 2015, 49, p 170-177CrossRefGoogle Scholar
  88. 88.
    C.-S. Kim, T.R. Massa, and G.S. Rohrer, Modeling the Relationship Between Microstructural Features and the Strength of WC–Co Composites, Int. J. Refract Metal Hard Mater., 2006, 24(1-2), p 89-100CrossRefGoogle Scholar
  89. 89.

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Institute of Materials EngineeringTU Dortmund UniversityDortmundGermany

Personalised recommendations