Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 7, pp 1056–1063 | Cite as

Microstructure and Thermophysical Properties of SrZrO3 Thermal Barrier Coating Prepared by Solution Precursor Plasma Spray

  • Wen Ma
  • Xinhui Li
  • Xiangfeng Meng
  • Yannan Xue
  • Yu Bai
  • Weidong Chen
  • Hongying Dong
Peer Reviewed
  • 62 Downloads

Abstract

Strontium zirconate (SrZrO3) thermal barrier coatings were deposited by solution precursor plasma spray (SPPS) using an aqueous precursor solution. The phase transition of the SrZrO3 coating and the influence of the aging time at 1400 °C on the microstructure, phase stability, thermal expansion coefficient, and thermal conductivity of the coating were investigated. The unique features of SPPS coatings, such as interpass boundary (IPB) structures, nano- and micrometer porosity, and through-thickness vertical cracks, were clearly observed evidently in the coatings. The vertical cracks of the coatings remained substantially unchanged while the IPB structures gradually diminished with prolonged heat treatment time. t-ZrO2 developed in the coatings transformed completely to m-ZrO2 phase after heat treatment for 100 h. Meanwhile, the SrZrO3 phase in the coatings exhibited good phase stability upon heat treatment. Three phase transitions in the SrZrO3 coatings were revealed by thermal expansion measurements. The thermal conductivity of the as-sprayed SrZrO3 coating was ~1.25 W m−1 K−1 at 1000 °C and remained stable after heat treatment at 1400 °C for 360 h, revealing good sintering resistance.

Keywords

perovskites segmented coatings solution precursor plasma spray thermal barrier coatings (TBCs) thermophysical properties 

Notes

Acknowledgments

The work is sponsored by the National Natural Science Foundation of China (Nos. 51462026 and 51672136) and the Inner Mongolia Natural Science Foundation (No. 2017MS0503).

References

  1. 1.
    R. Darolia, Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects, Int. Mater. Rev., 2013, 58, p 315-348CrossRefGoogle Scholar
  2. 2.
    D. Clarke, M. Oechsner, and N. Padture, Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines, MRS Bull., 2012, 37, p 891-898CrossRefGoogle Scholar
  3. 3.
    E. Bakan and R. Vaßen, Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties, J. Therm. Spray Technol., 2017, 26, p 992-1010CrossRefGoogle Scholar
  4. 4.
    Z. Lu, M.S. Kim, S.W. Myoung, J.H. Lee, Y.G. Jung, I.S. Kim, and C.Y. Jo, Thermal Stability and Mechanical Properties of Thick Thermal Barrier Coatings with Vertical Type Cracks, Trans. Nonferrous Met. Soc. China, 2014, 24, p s29-s35CrossRefGoogle Scholar
  5. 5.
    J.A. Krogstad, R.M. Leckie, and S. Krämer, Phase Evolution upon Aging of Air Plasma Sprayed t′-Zirconia Coatings: II–Microstructure Evolution, J. Am. Ceram. Soc., 2013, 96, p 299-307CrossRefGoogle Scholar
  6. 6.
    W. Pan, S.R. Philpot, C. Wan, A. Chernatynskiy, and Z. Qu, Low Thermal Conductivity Oxides, MRS Bull., 2012, 37, p 917-922CrossRefGoogle Scholar
  7. 7.
    W. Ma, F.Y. Song, and W.S. Lun, Sc2O3 and Gd2O3 Co-doped Strontium Zirconate as a New Thermal Barrier Coating Material, Adv. Mater. Res., 2011, 239–242, p 1457-1462CrossRefGoogle Scholar
  8. 8.
    W. Ma, M.O. Jarligo, D.E. Mack, D. Pitzer, J. Malzbender, R. Vassen, and D. Stöver, New Generation Perovskite Thermal Barrier Coating Materials, J. Therm. Spray Technol., 2008, 17, p 831-837CrossRefGoogle Scholar
  9. 9.
    C.J. Howard, K.S. Knight, and B.J. Kennedy, The Structural Phase Transitions in Strontium Zirconate Revisited, J. Phys. Condens. Matter, 2000, 12, p L677-L683CrossRefGoogle Scholar
  10. 10.
    N. Markocsan, M. Gupta, S. Joshi, P. Nylen, X. Li, and J. Wigren, Liquid Feedstock Plasma Spraying: An Emerging Process for Advanced Thermal Barrier Coatings, J. Therm. Spray Technol., 2017, 26, p 1104-1114CrossRefGoogle Scholar
  11. 11.
    M. Gell, J. Wang, R. Kumar, J. Roth, C. Jiang, and E.H. Jordan, Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2018, 27, p 543-555CrossRefGoogle Scholar
  12. 12.
    E.H. Jordan, C. Jiang, and M. Gell, The Solution Precursor Plasma Spray (SPPS) Process: A Review with Energy Considerations, J. Therm. Spray Technol., 2015, 246, p 1153-1165CrossRefGoogle Scholar
  13. 13.
    M. Gell, E.H. Jordan, and M. Teicholz, Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2008, 17, p 124-135CrossRefGoogle Scholar
  14. 14.
    X. Li, W. Ma, J. Wen, Y. Bai, L. Sun, B. Chen, H. Dong, and Y. Shuang, Preparation of SrZrO3 Thermal Barrier Coating by Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2017, 26, p 371-377CrossRefGoogle Scholar
  15. 15.
    X. Zhou, D. Liu, H. Bu, L. Deng, H. Liu, P. Yuan, P. Du, and H. Song, XRD-Based Quantitative Analysis of Clay Minerals Using Reference Intensity Ratios, Mineral Intensity Factors, Rietveld, and Full Pattern Summation Method: A Critical Review, Solid Earth Sci., 2018, 3, p 16-29CrossRefGoogle Scholar
  16. 16.
    N. Jacobson, Thermodynamic Properties of Some Metal Oxide Zirconia Systems, NASA TM 102351, (1989) p 1-63Google Scholar
  17. 17.
    U. Schulz, B. Saruhan, K. Fritscher, and C. Leyens, Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications, Int. J. Appl. Ceram. Technol., 2004, 1, p 302-315CrossRefGoogle Scholar
  18. 18.
    W. Ma, D.E. Mack, R. Vassen, and D. Stöver, Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2008, 91, p 2630-2635CrossRefGoogle Scholar
  19. 19.
    D.Y. Chen, E.H. Jordan, and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202, p 2132-2138CrossRefGoogle Scholar
  20. 20.
    J. Leitner, P. Chuchvalec, D. Sedmidubsky, A. Strejc, and P. Abrman, Estimation of Heat Capacities of Solid Mixed Oxides, Thermochim. Acta, 2002, 395, p 27-46CrossRefGoogle Scholar
  21. 21.
    D.P.H. Hasselman, L.F. Johnson, L.D. Bentsen, R. Syed, H.L. Lee, and M.V. Swain, Thermal Diffusivity and Conductivity of Dense Polycrystalline ZrO2 Ceramics: A Survey, Am. Ceram. Soc. Bull., 1987, 66, p 799-806Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Wen Ma
    • 1
    • 2
  • Xinhui Li
    • 1
    • 2
  • Xiangfeng Meng
    • 1
    • 2
  • Yannan Xue
    • 1
    • 2
  • Yu Bai
    • 1
    • 2
  • Weidong Chen
    • 1
    • 2
  • Hongying Dong
    • 3
  1. 1.School of Materials Science and EngineeringInner Mongolia University of TechnologyHohhotChina
  2. 2.Inner Mongolia Key Laboratory of Thin Film and Coatings TechnologyHohhotChina
  3. 3.School of Chemical EngineeringInner Mongolia University of TechnologyHohhotChina

Personalised recommendations