Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of Trace Ce Addition on Hot Deformation Behavior of Cu-0.8 Mg Alloy

  • 17 Accesses

Abstract

Hot deformation tests of Cu-0.8 Mg and Cu-0.8 Mg-0.15 Ce alloys were carried out with a Gleeble-1500D thermal simulator in the temperature range of 500-850°C and the strain rate range of 0.001-10 s−1. Based on compression tests, flow stress–strain curves and processing maps of Cu-0.8 Mg and Cu-0.8 Mg-0.15 Ce alloys were plotted, and constitutive equations of the two alloys were constructed. The microstructure of the two alloys under different hot deformation conditions was observed and analyzed by optical microscopy. The trace addition of Ce restricted the movement of dislocations, promoted dynamic recrystallization, increased the flow stress and activation energy for hot deformation and enlarged the hot working region compared to the alloy without trace Ce addition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    C.D. Xia, Y.L. Jia, W. Zhang, Q.Y. Dong, G.Y. Xu, and M. Wang, Study of Deformation and Aging Behaviors of a Hot Rolled-Quenched Cu-Cr-Zr-Mg-Si Alloy During Thermomechanical Treatments, Mater. Des., 2012, 39, p 404–409

  2. 2.

    Y. Pang, C.D. Xia, M.P. Wang, Z. Li, Z. Xiao, H.G. Wei, X.F. Sheng, Y.L. Jia, and C. Chen, Effects of Zr and (Ni, Si) Additions on Properties and Microstructure of Cu-Cr Alloy, J. Alloys Compd., 2014, 786, p 582

  3. 3.

    J.H. Su, Q.M. Dong, P. Liu, H.J. Li, and B.X. Kang, Research on Aging Precipitation in a Cu-Cr-Zr-Mg Alloy, Master. Sci. Eng. A, 2005, 392, p 422–426

  4. 4.

    P. Liu, B.X. Kang, X.G. Cao, J.L. Huang, B. Yen, and H.C. Gu, Aging Precipitation and Recrystallization of Rapidly Solidified Cu-Cr-Zr-Mg Alloy, Mater. Sci. Eng., A, 1999, 265, p 262–267

  5. 5.

    D.P. Lu, J. Wang, W.J. Zeng, Y. Liu, L. Lu, and B.D. Sun, Study on High-Strength and High-Conductivity Cu-Fe-P Alloys, Mater. Sci. Eng. A, 2006, 421, p 254–259

  6. 6.

    H. Zhang, H.G. Zhang, and L.X. Li, Hot Deformation Behavior of Cu-Fe-P Alloys During Compression at Elevated Temperatures, J. Mater. Eng. Perform., 2009, 209(6), p 2892–2896

  7. 7.

    R. Monzen and C. Watanabe, Microstructure and Mechanical Properties of Cu-Ni-Si Alloys, Mater. Sci. Eng. A, 2008, 483–484, p 117–119

  8. 8.

    D.M. Zhao, Q.M. Dong, P. Liu, B.X. Kang, J.L. Huang, and Z.H. Jin, Aging Behavior of Cu-Ni-Si Alloy, Mater. Sci. Eng. A, 2003, 361(1–2), p 93–99

  9. 9.

    G.B. Lin, Z.D. Wang, M.K. Zhang, H. Zhang, and M. Zhao, Heat Treatment Method for Making High Strength and Conductivity Cu-Cr-Zr Alloy, Mater. Sci. Technol., 2011, 6(1), p 966–969

  10. 10.

    R. Mishnev, I. Shakhova, A. Belyakov, and R. Kaibyshev, Deformation Microstructures Strengthening Mechanisms and Electrical Conductivity in a Cu-Cr-Zr Alloy, Mater. Sci. Technol., 2015, 629, p 29–40

  11. 11.

    A. Kumar, P. Dhekne, A.K. Swarnakar, and M.K. Chopkar, Analysis of Si Addition on Phase Formation in AlCoCrCuFeNiSix High Entropy Alloys, Mater. Lett., 2017, 188, p 73–76

  12. 12.

    J. Chen, Z. Chen, H. Yan, F. Zhang, and K. Liao, Effects of Sn Addition on Microstructure and Mechanical Properties of Mg-Zn-Al Alloys, J. Alloys Compd, 2008, 461(1–2), p 209–215

  13. 13.

    D.H. Xiao, J.N. Wang, D.Y. Ding, and H.L. Yang, Effect of Rare Earth Ce Addition on the Microstructure and Mechanical Properties of an Al-Cu-Mg-Ag Alloy, J. Alloys Compd., 2003, 352(1–2), p 84–88

  14. 14.

    L. Zhong, J. Peng, M. Li, Y. Wang, Y. Lu, and F. Fan, Effect of Ce Addition on the Microstructure, Thermal Conductivity and Mechanical Properties of Mg-0.5Mn Alloys, J. Alloys Compd., 2016, 661, p 402–410

  15. 15.

    Y. Zhang, A.A. Volinsky, H.T. Tian, Z. Chai, P. Liu, and B.H. Tian, Effects of Ce Addition on High Temperature Deformation Behavior of Cu-Cr-Zr Alloys, J. Mater. Eng. Perform., 2015, 24(10), p 3783–3788

  16. 16.

    H. Wu, S.P. Wen, H. Huang, X.L. Wu, and K.Y. Gao, Hot Deformation Behavior and Constitutive Equation of a New Type Al-Zn-Mg-Er-Zr Alloy During Isothermal Compression, Mater. Sci. Eng. A, 2016, 651, p 415–424

  17. 17.

    Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, and J.L. Zhang, Study of Dynamic Recrystallization in a Ni-Based Superalloy by Experiments and Cellular Automaton Model, Mater. Sci. Eng. A, 2015, 625, p 432–440

  18. 18.

    X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577

  19. 19.

    S. Arrhenius, Über die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch säuren, Z. Phys. Chem., 1889, 4, p 226

  20. 20.

    C. Zener and J.H. Hollomon, Effects of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32

  21. 21.

    H.L. Sun, Y. Zhang, A.A. Volinsky, B.J. Wang, B.H. Tian, K.X. Song, Z. Chai, and Y. Liu, Effects of Ag Addition on Hot Deformation Behavior of Cu-Ni-Si Alloys, Adv. Eng. Mater., 2017, 19, p 38–46

  22. 22.

    B.J. Wang, Y. Zhang, B.H. Tian, J.C. An, A.A. Volinsky, H.L. Sun, Y. Liu, and K.X. Song, Effects of Ce Addition on the Cu-Mg-Fe Alloy Hot Deformation Behavior, Vacuum, 2018, 155, p 594–603

  23. 23.

    Y. Zhang, H.L. Sun, A.A. Volinsky, B.H. Tian, K.X. Song, and Y. Liu, Hot Workability and Constitutive Model of the Cu-Zr-Nd Alloy, Vacuum, 2017, 146(12), p 35–43

  24. 24.

    F. Chen, G. Feng, and Z. Cui, New Constitutive Model for Hot Working, Metall. Mater. Trans. A, 2016, 47, p 1229–1239

  25. 25.

    A. Mirzaei, A. Zarei-Hanzaki, N. Haghdadi, and A. Marandi, Constitutive Description of High Temperature Flow Behavior of Sanicro-28 Super-Austenitic Stainless Steel, Mater. Sci. Eng. A, 2014, 589, p 76–82

  26. 26.

    T. Xi, C. Yang, M.B. Shahzad, and K. Yang, Study of the Processing Map and Hot Deformation Behavior of a Cu-Bearing 317LN Austenitic Stainless Steel, Mater. Des., 2015, 87, p 303–312

  27. 27.

    Y. Song, P. Chang, Q. Li, L. Xie, and S. Zhu, Hot Deformation Characteristics and Processing Map of Nickel-Based C276 Superalloy, J. Alloys Compd., 2015, 625, p 738–744

  28. 28.

    C. Zhang, L. Zhang, W. Shen, Q. Xu, and Y. Cui, The Processing Map and Microstructure Evolution of Ni-Cr-Mo-Based C276 Superalloy During Hot Compression, J. Alloys Compd., 2017, 728, p 1269–1278

  29. 29.

    O. Sivakesavam and Y. Prasad, Characteristics of Super Plasticity Domain in the Processing Map for Hot Working of As-Cast Mg-11.5Li-1.5 Al Alloy, Mater. Sci. Eng. A, 2002, 323, p 270–277

  30. 30.

    H.Z. Li, H.J. Wang, X.P. Liang, H.T. Liu, and Y. Liu, Hot Deformation and Processing Map of 2519A Aluminum Alloy, Mater. Sci. Eng. A, 2011, 528, p 1548–1552

  31. 31.

    S.K. Oh, K.K. Lee, Y.S. Na, C.H. Suh, and Y.C. Jung, Optimization of the Hot Workability for an Extrude AZ80 Mg Alloy Using the Processing Map and Kriging Meta-Model, Int. J. Precis. Eng. Manuf., 2015, 16, p 1149–1156

  32. 32.

    J. Yan, Q.L. Pan, B. Li, Z.Q. Huang, Z.M. Liu, and Z.M. Yin, Research on the Hot Deformation Behavior of Al-6.2Zn-0.70 Mg-0.3Mn-0.17Zr Alloy Using Processing Map, J. Alloys Compd., 2015, 632, p 549–557

  33. 33.

    M. Sarebanzadeh, R. Mahmudi, and R. Roumina, Constitutive Analysis and Processing Map of an Extruded Mg-3Gd-1Zn Alloy Under Hot Shear Deformation, Mater. Sci. Eng. A, 2015, 637, p 155–161

  34. 34.

    F.R. Castro-Fernandez and C.M. Sellars, Changes of Flow Stress and Microstructure During Hot Deformation of Al-1Mg-1Mn, Mater. Sci. Technol., 2013, 6, p 453–460

  35. 35.

    A.A. Hameda and L. Blaz, Microstructure of Hot-Deformed Cu-3.45 wt.% Ti Alloy, Mater. Sci. Eng. A, 1998, 254, p 83–89

  36. 36.

    B.J. Wang, Y. Zhang, B.H. Tian, V. Yakubov, J.C. An, A.A. Volinsky, Y. Liu, K.X. Song, L.H. Li, and M. Fu, Effects of Ce and Y Addition on Microstructure Evolution and Precipitation of Cu-Mg Alloy Hot Deformation, J. Alloys Compd., 2019, 781, p 118–130

  37. 37.

    Y. Liu, R.L. Zhao, B.H. Tian, and X.W. Zhang, Hot-Compression Behaviors of W-50%Cu Composite, Rare Met., 2011, 30, p 610–613

  38. 38.

    Y. Liu, Z.Q. Yang, B.H. Tian, Y. Zhang, Z.B. Gu, and A.A. Volinsky, Hot Deformation Behavior of the 20 vol.% TiC/Cu-Al2O3 Composites, J. Mater. Eng. Perform., 2018, 27, p 4791–4798

Download references

Acknowledgments

This work was supported by the National Natural Science Fund of China (U1704143) and the Science and Technology Open-Cooperate Fund of the Henan Province (182106000018). Prof. Zhou Xudong provided help with the experiments. The authors thank Vladislav Yakubov for proofreading the paper.

Author information

Correspondence to Yong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Liu, Y., Tian, B. et al. Effects of Trace Ce Addition on Hot Deformation Behavior of Cu-0.8 Mg Alloy. J. of Materi Eng and Perform (2020). https://doi.org/10.1007/s11665-020-04619-x

Download citation

Keywords

  • constitutive model
  • Cu-0.8 Mg alloy
  • Cu-0.8 Mg-0.15 Ce alloy
  • hot deformation tests
  • processing maps