Advertisement

Correlating Effect of Temperature on Cyclic Plastic Deformation Behavior with Substructural Developments for Austenitic Stainless Steel

  • Rima DeyEmail author
  • Soumitra Tarafder
  • Himadri Bar
  • S. Sivaprasad
Article
  • 32 Downloads

Abstract

Low-cycle fatigue experiments have been carried out at elevated and sub-zero temperatures. Corresponding effect on cyclic plasticity characterizing parameters such as cyclic hardening/softening and Masing behavior is compared for different loading conditions. Disparities in the fatigue life as well as the cyclic plastic behavior have been attributed to the phase transformations that largely obstruct the dislocation motion. Further, the changes in strains in the materials matrix have been quantified through misorientation studies, wherein clear demarcation in strain distributions due to fatigue loading at different temperatures was obtained and further correlated with the substructural alterations observed through transmission electron microscopy.

Keywords

dislocations EBSD fatigue martensite stainless steel 

Notes

Acknowledgment

The authors are grateful to Dr. Mainak Ghosh and Dr. Bhupesh Mahato for helping in carrying out the transmission electron microscopy studies.

Conflict of interest

This is to certify that all authors have seen and approved the final version of the manuscript being submitted, and there is no conflict of interest.

References

  1. 1.
    U. Krupp, C. West, and H.J. Christ, Deformation-Induced Martensite Formation During Cyclic Deformation of Metastable Austenitic Steel: Influence of Temperature and Carbon Content, Mater. Sci. Eng., A, 2008, 481, p 713–717CrossRefGoogle Scholar
  2. 2.
    F. Hahnenberger, M. Smaga, and D. Eifler, Fatigue Behavior and Phase Transformation in Austenitic Steels in the Temperature Range-60 C ≤ T ≤ 25 C, Procedia Eng., 2011, 10, p 625–630CrossRefGoogle Scholar
  3. 3.
    A. Das and S. Tarafder, Experimental Investigation on Martensitic Transformation and Fracture Morphologies of Austenitic Stainless Steel, Int. J. Plast, 2009, 25, p 2222–2247CrossRefGoogle Scholar
  4. 4.
    Z. Mei and J.W. Morris, Influence of Deformation-Induced Martensite on Fatigue Crack Propagation in 304-Type Steels, Metall. Trans. A, 1990, 21, p 3137–3152CrossRefGoogle Scholar
  5. 5.
    F. Hahnenberger, M. Smaga, and D. Eifler, Microstructural Investigation of the Fatigue Behavior and Phase Transformation in Metastable Austenitic Steels at Ambient and Lower Temperatures, Int. J. Fatigue, 2014, 69, p 36–48CrossRefGoogle Scholar
  6. 6.
    K. Suzuki, J. Fukakura, and H. Kashiwaya, Cryogenic Fatigue Properties of 304L and 316L Stainless Steels Compared to Mechanical Strength And Increasing Magnetic Permeability, J. Test. Eval., 1998, 16, p 190–197Google Scholar
  7. 7.
    S.D. Raman and K.A. Padmanabhan, Determination of the Room-Temperature Cyclic Stress-Strain Curve of AISI, 304LN Austenitic Stainless Steel by Two Different Methods, Int. J. Fatigue, 1992, 14, p 295–304CrossRefGoogle Scholar
  8. 8.
    S.K. Paul, S. Sivaprasad, S. Dhar, and S. Tarafder, Cyclic Plastic Deformation and Damage in 304LN Stainless Steel, Mater. Sci. Eng., A, 2011, 528(15), p 4873–4882CrossRefGoogle Scholar
  9. 9.
    S.K. Paul, S. Sivaprasad, S. Dhar, and S. Tarafder, Key Issues in Cyclic Plastic Deformation: Experimentation, Mech. Mater., 2011, 43, p 705–720CrossRefGoogle Scholar
  10. 10.
    D. Ye, S. Matsuoka, N. Nagashima, and N. Suzuki, The Low-Cycle Fatigue, Deformation and Final Fracture Behaviour of an Austenitic Stainless Steel, Mater. Sci. Eng., A, 2006, 415, p 104–117CrossRefGoogle Scholar
  11. 11.
    S. Sivaprasad, S.K. Paul, A. Das, N. Narasaiah, and S. Tarafder, Cyclic Plastic Behaviour of Primary Heat Transport Piping Materials: Influence of Loading Schemes on Hysteresis Loop, Mater. Sci. Eng., A, 2010, 527, p 6858–6869CrossRefGoogle Scholar
  12. 12.
    A. Kundu, D.P. Field, and P.C. Chakraborti, Influence of Strain Amplitude on the Development of Dislocation Structure During Cyclic Plastic Deformation of 304 LN Austenitic Stainless Steel, Mater. Sci. Eng., A, 2019, 762, p 138090CrossRefGoogle Scholar
  13. 13.
    A. Das, S. Sivaprasad, P.C. Chakraborti, and S. Tarafder, Connection Between Deformation-Induced Dislocation Substructures and Martensite Formation in Stainless Steel, Philos. Mag. Lett., 2011, 91, p 664–675CrossRefGoogle Scholar
  14. 14.
    S.G. Raman and K.A. Padmanabhan, A Comparison of the Room-Temperature Behaviour of AISI, 304LN Stainless Steel and Nimonic 90 Under Strain Cycling, Int. J. Fatigue, 1995, 17, p 271–277CrossRefGoogle Scholar
  15. 15.
    S.K. Paul, N. Stanford, and T. Hilditch, Effect of Martensite Volume Fraction on Low Cycle Fatigue Behaviour of Dual Phase Steels: Experimental and Microstructural Investigation, Mater. Sci. Eng., A, 2015, 25, p 296–304CrossRefGoogle Scholar
  16. 16.
    R. Dey, S. Tarafder, and S. Sivaprasad, Influence of Phase Transformation Due to Temperature on Cyclic Plastic Deformation in 304LN Stainless Steel, Int. J. Fatigue, 2016, 90, p 148–157CrossRefGoogle Scholar
  17. 17.
    J. Lemaitre, A Course on Damage Mechanics, 2nd ed., Springer, Berlin, 1996CrossRefGoogle Scholar
  18. 18.
    V. Pepel, A. Žerovnik, J. Trajkovski, and I. Prebil, Comparison of Three Different Methods for Determination of Damage in Solid Materials, Mater. Des., 2014, 56, p 872–877CrossRefGoogle Scholar
  19. 19.
    M. Bayerlein, H.J. Christ, and H. Mughrabi, Plasticity-Induced Martensitic Transformation During Cyclic Deformation of AISI, 304L Stainless Steel, Mater. Sci. Eng., A, 1989, 114, p L11–L16CrossRefGoogle Scholar
  20. 20.
    A. Das, S. Sivaprasad, P.C. Chakraborti, and S. Tarafder, Morphologies and Characteristics Of Deformation Induced Martensite During Low Cycle Fatigue Behaviour of Austenitic Stainless Steel, Mater. Sci. Eng., A, 2011, 528, p 7909–7914CrossRefGoogle Scholar
  21. 21.
    F. Ellyin, Fatigue Damage Crack Growth and Life Prediction. 1st ed., Chapman & Hall, 1997, ISBN 0 412 59600 8. p 61 [chapter 2]Google Scholar
  22. 22.
    H. Mughrabi and H.J. Christ, Cyclic Deformation and Fatigue of Selected Ferritic and Austenitic Steels: Specific Aspects, ISIJ Int., 1997, 37, p 1154–1169CrossRefGoogle Scholar
  23. 23.
    H.J. Christ and H. Mughrabi, Cyclic Stress–Strain Response and Microstructure Under Variable Amplitude Loading, Fatigue Fract. Eng. Mater. Struct., 1996, 19, p 335–348CrossRefGoogle Scholar
  24. 24.
    S.G. Raman and K.A. Padmanabhan, Effect of Prior Cold Work on the Room-Temperature Low-Cycle Fatigue Behaviour of AISI, 304LN Stainless steel, Int. J. Fatigue, 1996, 18, p 71–79CrossRefGoogle Scholar
  25. 25.
    G.K. Bansal, D.A. Madhukar, A.K. Chandan, K. Ashok, G.K. Mandal, and V.C. Srivastava, On the Intercritical Annealing Parameters and Ensuing Mechanical Properties of Low-Carbon Medium-Mn Steel, Mater. Sci. Eng., A, 2018, 733, p 246–256CrossRefGoogle Scholar
  26. 26.
    Y. He, S. Godet, and J.J. Jonas, Representation of Misorientations in Rodrigues-Frank Space: Application to the Bain, Kurdjumov-Sachs, Nishiyama-Wassermann and Pitsch Orientation Relationships in the Gibeon Meteorite, Acta Mater., 2005, 53, p 1179–1190CrossRefGoogle Scholar
  27. 27.
    S.I. Wright, M.M. Nowell, and D.P. Field, A Review of Strain Analysis Using Electron Backscatter Diffraction, Microsc. Microanal., 2011, 17, p 316–329CrossRefGoogle Scholar
  28. 28.
    S. Suwas and N.P. Gurao, Crystallographic Texture in Materials, J. Ind. Inst. Sci., 2008, 88, p 151–177Google Scholar
  29. 29.
    S.T. Wardle, L.S. Lin, A. Cetel, B.L. Adams, Orientation Imaging Microscopy: Monitoring Residual Stress Profiles in Single Crystals Using an Image-Quality Parameter, IQ. Proceedings of the Annual Meeting-Electron Microscopy Society of America, San Francisco Press, 1994, p 680Google Scholar
  30. 30.
    T.S. Byun, N. Hashimoto, and K. Farrell, Temperature Dependence of Strain Hardening and Plastic Instability Behaviors in Austenitic Stainless Steels, Acta Mater., 2004, 52, p 3889–3899CrossRefGoogle Scholar
  31. 31.
    J. Talonen and H. Hänninen, Formation of Shear Bands and Strain-Induced Martensite During Plastic Deformation of Metastable Austenitic Stainless Steels, Acta Mater., 2007, 55, p 6108–6118CrossRefGoogle Scholar
  32. 32.
    C. Gaudin and X. Feaugas, Cyclic Creep Process in AISI, 316L Stainless Steel in Terms of Dislocation Patterns and Internal Stresses, Acta Mater., 2004, 52(10), p 3097–3110CrossRefGoogle Scholar
  33. 33.
    H. Mughrabi, Dislocation in fatigue. Dislocations and properties of real materials, M.H. Loretto, Ed., The institute of metals, London. 1985, p 244–262Google Scholar
  34. 34.
    T. Mura, H. Shirai, J.R. Weertman, The Elastic Energy of Dislocation Structure in Fatigued Metals, Proceedings of 2nd International Symposium and 7th Canadian Fracture Conference on Defects, Fracture and Fatigue, 1982, p 67–74Google Scholar
  35. 35.
    S. Nishino, N. Hamada, M. Sakane, M. Ohnami, N. Matsumura, and M. Tokizane, Microstructural Study of Cyclic Strain Hardening Behaviour in Biaxial Stress States at Elevated Temperature, Fatigue Fract. Eng. Mater. Struct., 1986, 9, p 65–77CrossRefGoogle Scholar
  36. 36.
    R. Dey, S. Tarafder, and S. Sivaprasad, Influence of Axial and Torsional Cyclic Loading on the Fatigue Behavior of 304LN Stainless Steel Using Solid and Hollow Specimens, Mech. Mater., 2018, 122, p 58–68CrossRefGoogle Scholar
  37. 37.
    S. Ji, C. Liu, Y. Li, S. Shi, and X. Chen, Effect of Torsional Pre-strain on Low Cycle Fatigue Performance of 304 Stainless Steel, Mater. Sci. Eng., A, 2019, 746, p 50–57CrossRefGoogle Scholar

Copyright information

© ASM International 2020

Authors and Affiliations

  1. 1.Fatigue and Fracture GroupCSIR-National Metallurgical LaboratoryJamshedpurIndia

Personalised recommendations