Advertisement

High-Temperature Tribological Performance of Vacuum Hot-Pressed NiCr Matrix Composite Containing SrAl12O19

  • 52 Accesses

Abstract

The tribological properties of NiCr-30 wt.% Al2O3 (denoted by NC30A) composite with 4 wt.% SrCO3 were investigated at different testing temperatures. The results indicated that the formation of SrAl12O19, which was derived from the solid-state reaction between SrO and Al2O3 in the sintering process had an impact on the friction coefficient and wear rate of NC30A composite. In the temperature range from 200 to 800 °C, the tribofilm containing SrAl12O19 and oxides (NiO, Cr2O3 and NiCr2O4) led to a decrease in the friction coefficient, while the detachment of Al2O3 grains and the oxidation of Ni on the worn surface endowed the sintered composite with a slightly higher wear rate.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 408

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    X. Feng, C. Lu, J. Jia, J. Xue, Q. Wang, Y. Sun, W. Wang, and G. Yi, High Temperature Tribological Behaviors and Wear Mechanisms of NiAl-NbC-Ag Composites Formed by In Situ Decomposition of AgNbO3, Tribol Int., 2020, 141, p 105898

  2. 2.

    M. Kotkowiak, A. Piasecki, and M. Kulka, The Influence of Solid Lubricant on Tribological Properties of Sintered Ni-20%CaF2 Composite Material, Ceram. Int., 2019, 45, p 17103–17113

  3. 3.

    T.R. Prabhu, M. Arivarasu, Y. Chodancar, N. Arivazhagan, G. Sumanth, and R.K. Mishra, Tribological Behaviour of Graphite-Reinforced FeNiCrCuMo High-Entropy Alloy Self-Lubricating Composites for Aircraft Braking Energy Applications, Tribol. Lett., 2019, 67, p 78

  4. 4.

    K.P. Furlan, J.D.B. de Mello, and A.N. Klein, Self-Lubricating Composites Containing MoS2: A Review, Tribol. Int., 2018, 120, p 280–298

  5. 5.

    Q. Bi, S. Zhu, W. Liu, High Temperature Self-Lubricating Materials, Tribology in Engineering, H. Pihtili, Ed., InTech, Rijeka, 2013, pp Ch. 07

  6. 6.

    S. Cao, J. Zhou, L. Wang, Y. Yu, and B. Xin, Microstructure, Mechanical and Tribological Property of Multi-components Synergistic Self-Lubricating NiCoCrAl Matrix Composite, Tribol. Int., 2019, 131, p 508–519

  7. 7.

    F. Liu, G.W. Yi, W.Z. Wang, Y. Shan, and J.H. Jia, Tribological Properties of NiCr-Al2O3 Cermet-Based Composites with Addition of Multiple-Lubricants at Elevated Temperatures, Tribol. Int., 2013, 67, p 164–173

  8. 8.

    H. Heshmat, P. Hryniewicz, J.F. Walton Ii, J.P. Willis, S. Jahanmir, and C. DellaCorte, Low-Friction Wear-Resistant Coatings for High-Temperature Foil Bearings, Tribol. Int., 2005, 38, p 1059–1075

  9. 9.

    J.L. Li, D.S. Xiong, and M.F. Huo, Friction and Wear Properties of Ni-Cr-W-Al-Ti-MoS2 at Elevated Temperatures and Self-Consumption Phenomena, Wear, 2008, 265, p 566–575

  10. 10.

    J.L. Li and D.S. Xiong, Tribological Properties of Nickel-Based Self-Lubricating Composite at Elevated Temperature and Counterface Material Selection, Wear, 2008, 265, p 533–539

  11. 11.

    A.A. Voevodin, C. Muratore, and S.M. Aouadi, Hard Coatings with High Temperature Adaptive Lubrication and Contact Thermal Management: Review, Surf. Coat. Technol., 2014, 257, p 247–265

  12. 12.

    S.M. Aouadi, H. Gao, A. Martini, T.W. Scharf, and C. Muratore, Lubricious Oxide Coatings for Extreme Temperature Applications: A Review, Surf. Coat. Technol., 2014, 257, p 266–277

  13. 13.

    F. Li, J. Cheng, Z. Qiao, J. Ma, S. Zhu, L. Fu, J. Yang, and W. Liu, A Nickel-Alloy-Based High-Temperature Self-Lubricating Composite with Simultaneously Superior Lubricity and High Strength, Tribol. Lett., 2013, 49, p 573–577

  14. 14.

    C.H. Ding, C.H. Liu, Z.M. Yang, Y.P. Wang, Z.B. Sun, and L. Yu, Effect of Size Refinement and Distribution of Lubricants on Friction Coefficient of High Temperature Self-Lubricating Composites, Compos. Sci. Technol., 2010, 70, p 1000–1005

  15. 15.

    R.K.S. Gautam, U.S. Rao, and R. Tyagi, High Temperature Tribological Properties of Ni-Based Self-Lubricating Coatings Deposited by Atmospheric Plasma Spray, Surf. Coat. Technol., 2019, 372, p 390–398

  16. 16.

    T. Zhang, C. Huang, H. Lan, L. Du, and W. Zhang, Tribological Properties and Lubrication Mechanisms of a Ag–Mo Composite, Lubr. Sci., 2016, 28, p 141–156

  17. 17.

    H. Zhong, X. Feng, J. Jia, and G. Yi, Tribological Characteristics and Wear Mechanisms of NiMoAl Composite Coatings in Reversible Temperature Cycles from RT to 900 °C, Tribol. Int., 2017, 114, p 48–56

  18. 18.

    J. Wang, Y. Shan, H. Guo, B. Li, W. Wang, and J. Jia, Friction and Wear Characteristics of Hot-Pressed NiCr–Mo/MoO3/Ag Self-Lubrication Composites at Elevated Temperatures up to 900° C, Tribol. Lett., 2015, 59, p 48

  19. 19.

    A.V. Bondarev, P.V. Kiryukhantsev-Korneev, D.A. Sidorenko, and D.V. Shtansky, A New Insight into Hard Low Friction MoCN–Ag Coatings Intended for Applications in Wide Temperature Range, Mater. Des., 2016, 93, p 63–72

  20. 20.

    Z. Xu, Q. Zhang, and W. Zhai, Tribological Properties of TiAl Matrix Self-Lubricating Composites Incorporated with Tungsten Disulfide and Zinc Oxide, RSC Adv., 2015, 5, p 45044–45052

  21. 21.

    S. Zhu, Q. Bi, J. Yang, and W. Liu, Ni3Al Matrix Composite with Lubricious Tungstate at High Temperatures, Tribol. Lett., 2012, 45, p 251–255

  22. 22.

    D. Stone, J. Liu, D.P. Singh, C. Muratore, A.A. Voevodin, S. Mishra, C. Rebholz, Q. Ge, and S.M. Aouadi, Layered Atomic Structures of Double Oxides for Low Shear Strength at High Temperatures, Scr. Mater., 2010, 62, p 735–738

  23. 23.

    S. Zhu, H. Tan, J. Cheng, Y. Yu, Z. Qiao, and J. Yang, Nickel Aluminum Matrix Solid-Lubricating Composite Lubricated by Silver and Silver Vanadate Formed by Tribochemistry at Elevated Temperature, J. Tribol., 2019, 141, p 031302

  24. 24.

    S.M. Aouadi, D.P. Singh, D.S. Stone, K. Polychronopoulou, F. Nahif, C. Rebholz, C. Muratore, and A.A. Voevodin, Adaptive VN/Ag Nanocomposite Coatings with Lubricious Behavior from 25 to 1000° C, Acta Mater., 2010, 58, p 5326–5331

  25. 25.

    H. Guo, M. Han, W. Chen, C. Lu, B. Li, W. Wang, and J. Jia, Microstructure and Properties of VN/Ag Composite Films with Various Silver Content, Vacuum, 2017, 137, p 97–103

  26. 26.

    B. Xin, Y. Yu, J. Zhou, L. Wang, S. Ren, and Z. Li, Effect of Silver Vanadate on the Lubricating Properties of NiCrAlY Laser Cladding Coating at Elevated Temperatures, Surf. Coat. Technol., 2016, 307, p 136–145

  27. 27.

    J. Li, J. Wang, A. Kumar, H. Li, and D. Xiong, High Temperatures Tribological Properties of Ta-Ag Films Deposited at Various Working Pressures and Sputtering Powers, Surf. Coat. Technol., 2018, 349, p 186–197

  28. 28.

    D.S. Stone, H. Gao, C. Chantharangsi, C. Paksunchai, M. Bischof, A. Martini, and S.M. Aouadi, Reconstruction Mechanisms of Tantalum Oxide Coatings with Low Concentrations of Silver for High Temperature Tribological Applications, Appl. Phys. Lett. (USA), 2014, 105, p 191607

  29. 29.

    H. Gao, A. Otero-de-la-Roza, S.M. Aouadi, A. Martini, and E.R. Johnson, Chemical Basis of the Tribological Properties of AgTaO3 Crystal Surfaces, J. Phys. Chem. C, 2014, 118, p 17577–17584

  30. 30.

    D.S. Stone, H. Gao, C. Chantharangsi, C. Paksunchai, M. Bischof, D. Jaeger, A. Martini, T.W. Scharf, and S.M. Aouadi, Load-Dependent High Temperature Tribological Properties of Silver Tantalate Coatings, Surf. Coat. Technol., 2014, 244, p 37–44

  31. 31.

    D.S. Stone, S. Harbin, H. Mohseni, J.E. Mogonye, T.W. Scharf, C. Muratore, A.A. Voevodin, A. Martini, and S.M. Aouadi, Lubricious Silver Tantalate Films for Extreme Temperature Applications, Surf. Coat. Technol., 2013, 217, p 140–146

  32. 32.

    F. Liu and J.H. Jia, Tribological Properties and Wear Mechanisms of NiCr-Al2O3-SrSO4-Ag Self-Lubricating Composites at Elevated Temperatures, Tribol. Lett., 2013, 49, p 281–290

  33. 33.

    F. Liu, G. Yi, W. Wang, Y. Shan, and J. Jia, The Influence of SrSO4 on the Tribological Properties of NiCr-Al2O3 Cermet at Elevated Temperatures, Ceram. Int., 2014, 40, p 2799–2807

  34. 34.

    F. Liu, Y. Zhou, X. Zhang, W. Cao, and J. Jia, Tribological Properties of NiCr-ZrO2(Y2O3)-SrSO4 Composites at Elevated Temperatures, Ceram. Int., 2016, 42, p 12981–12987

  35. 35.

    Y. Xu, W. Peng, S. Wang, X. Xiang, and P. Lu, Synthesis of SrAl12O19 via Citric Acid Precursor, Mater. Sci. Eng. B, 2005, 123, p 139–142

  36. 36.

    M. Bukhtiyarova, A. Ivanova, E. Slavinskaya, P. Kuznetsov, L. Plyasova, O. Stonkus, V. Rogov, V. Kaichev, and A. Noskov, Steam Reforming of Methane over Ni-Substituted Sr Hexaaluminates, Catal. Sustai. Energy, 2012, 1, p 11–21

  37. 37.

    Z. Xu, M. Zhen, Y. Bi, and K. Zhen, Carbon Dioxide Reforming of Methane to Synthesis Gas over Hexaaluminate ANiAl11O19-delta (A = Ca, Sr, Ba and La) Catalysts, Catal. Lett., 2000, 64, p 157–161

  38. 38.

    V. Malinovschi, A. Marin, D. Negrea, V. Andrei, E. Coaca, C.N. Mihailescu, and C.P. Lungu, Characterization of Al2O3/ZrO2 Composite Coatings Deposited on Zr-2.5Nb Alloy by Plasma Electrolytic Oxidation, Appl. Surf. Sci., 2018, 451, p 169–179

  39. 39.

    J. Chastain, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, 1992

Download references

Acknowledgments

The authors acknowledge the financial supports by the National Natural Science Foundation of China (Grant No. 51505378) and the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2017JM5101).

Author information

Correspondence to Feng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Feng, L., Liu, H. et al. High-Temperature Tribological Performance of Vacuum Hot-Pressed NiCr Matrix Composite Containing SrAl12O19. J. of Materi Eng and Perform (2020). https://doi.org/10.1007/s11665-020-04562-x

Download citation

Keywords

  • elevated temperature
  • SrAl12O19
  • tribological properties
  • wear mechanism