Advertisement

Structure and Mechanical Properties of Steel in the Process “Pressing–Drawing”

  • Abdrakhman Naizabekov
  • Irina VolokitinaEmail author
  • Andrey Volokitin
  • Evgeniy Panin
Article
  • 33 Downloads

Abstract

Grain structure and mechanical properties of steel A570 GR36 alloy subjected to four passes via combined “pressing–drawing” process at room temperature were investigated. In the “pressing–drawing” process, the structure of the wire is significantly reduced to ultrafine-grained state; so in the steel of grade A570 GR36, the average grain size of 12 microns after deformation was reduced up to 20 times (0.6 microns). The values of tensile strength and yield strength increased after four passes from 380 to 740 MPa and from 220 to 680 MPa, respectively. The contraction changed from 63 to 55%, but the change was not as significant as under the classic drawing. The four-pass combined “pressing–drawing” process is an effective way to form UFG structure and improved mechanical properties in steel A570 GR36 alloy.

Keywords

die microstructure pressing–drawing steel wire 

References

  1. 1.
    M.V. Chukin, M.A.Poljakova, and D.G. Emaleeva, Деформационное наноструктурирование проволок (Strain nanostructuring wire) (Magnitogorsk, 2012), p. 57Google Scholar
  2. 2.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45, p 103–189CrossRefGoogle Scholar
  3. 3.
    X. Zhao, N. Chen, and N. Zhao, Numerical Simulation of Equal Channel Angular Pressing for Multi-Pass in Different Routes, Appl. Mech. Mater., 2012, 268–270, p 373–377CrossRefGoogle Scholar
  4. 4.
    I.E. Volokitina and G.G. Kurapov, Effect of Initial Structural State on Formation of Structure and Mechanical Properties of Steels Under ECAP, Met. Sci. Heat Treat., 2018, 59, p 786–792CrossRefGoogle Scholar
  5. 5.
    D. Orlov, G. Raab, T.T. Lamark, M. Popov, and Y. Estrin, Improvement of Mechanical Properties of Magnesium Alloy ZK60 by Integrated Extrusion and Equal Channel Angular Pressing, Acta Mater., 2011, 59, p 375–385CrossRefGoogle Scholar
  6. 6.
    A.B. Naizabekov, S.N. Lezhnev, and I.E. Volokitina, Change in Copper Microstructure and Mechanical Properties with Deformation in an Equal Channel Stepped Die, Met. Sci. Heat Treat., 2015, 57(5–6), p 254–260CrossRefGoogle Scholar
  7. 7.
    S. Wang, W. Liang, Yu Wang, L. Bian, and K. Chen, A Modified Die for Equal Channel Angular Pressing, J. Mater. Process. Technol., 2009, 209, p 3182–3186CrossRefGoogle Scholar
  8. 8.
    M. Jahedi, M. Knezevic, and M.H. Paydar, High-Pressure Doublem Torsion as Severe Plastic Deformation Process: Experimental Procedure and Finite Element Modeling, J. Mater. Eng. Perform., 2015, 24(4), p 1471–1482CrossRefGoogle Scholar
  9. 9.
    M. Kawasakia, Z. Horitab, and T.G. Langdona, Microstructural Evolution in High Purity Aluminum Processed by ECAP, Mater. Sci. Eng. A, 2009, 524(1–2), p 143–150CrossRefGoogle Scholar
  10. 10.
    M. Vaseghi, H.S. Kim, A.K. Taheri, and A. Momeni, Inhomogeneity Through Warm Equal Channel Angular Pressing, J. Mater. Eng. Perform., 2013, 22(6), p 1666–1671CrossRefGoogle Scholar
  11. 11.
    V.M. Segal, A.E. Reznikov, A.E. Drobyshevskiy, and V.I. Kopylov, Plastic Working of Metals by Simple Shear, Russ. Metall., 1981, 1, p 971–974Google Scholar
  12. 12.
    V.M. Segal, Engineering and Commercialization of Equal Channel Angular Extrusion (ECAE), Mater. Sci. Eng., A, 2004, 386, p 269–276CrossRefGoogle Scholar
  13. 13.
    S. Lezhnev, A. Naizabekov, and I. Volokitina, Features of Change of the Structure and Mechanical Properties of Steel at ECAP Depending on the Initial State, J. Chem. Technol. Metall., 2017, 52(4), p 626–635Google Scholar
  14. 14.
    G. Raab, R. Valiev, T. Lowe, and Y. Zhu, Continuous Processing of Ultrafine Grained A1 by ECAP-Conform, Mater. Sci. Eng., 2004, 382, p 30–34CrossRefGoogle Scholar
  15. 15.
    G.I. Raab, E.I. Fakhretdinova, R.Z. Valiev, L.P. Trifonenkov, and V.F. Frolov, Computer Study of the Effect of Tooling Geometry on Deformation Parameters in the Plastic Shaping of Aluminum Wire Rod by Multi-ECAP-Conform, Metallurgist, 2016, 59(11–12), p 1007–1014CrossRefGoogle Scholar
  16. 16.
    M.V. Chukin, M.A. Poljakova, E.M. Golubchik, V.P Rudako, S.E. Noskov, and A.E. Gulin, Method of Making Ultrafine Semis by Drawing with Twisting. Patent of RF, No. 2467816 (2012)Google Scholar
  17. 17.
    G.I. Raab and A.G.Raab, Device for Drawing and Production of Ultrafine-Grained Semi-Finished Products. Patent of RF No. 2347632 (2007)Google Scholar
  18. 18.
    Y.G. Jin, I.H. Son, S.H. Kang, and Y.T. Im, Three-Dimensional Finite Element Analysis of Multi-pass Equal-Channel Angular Extrusion of Aluminum AA1050 with Split Dies, Mater. Sci. Eng., A, 2009, 503, p 152–155CrossRefGoogle Scholar
  19. 19.
    S. Lezhnev, A.B. Naizabekov, E. Panin, I. Volokitina, and T. Koinov, The Effect of Preliminary and Final Heat Treatment in Course of the Combined “Rolling-Pressing” Process Realization on Microstructure Evolution of Copper, J. Chem. Technol. Metall., 2016, 51, p 315–321Google Scholar
  20. 20.
    K. Muszka, M. Wielgus, K. Doniec, and M. Stefanska-Kadziela, Influence of Strain Changes on Microstructure Inhomogeneity and Mechanical Behavior of Wire Drawing Products, Mater. Sci. Forum, 2010, 654, p 314–317CrossRefGoogle Scholar
  21. 21.
    M.V. Chukin, D.G. Emaleeva, M.P. Baryshnikov, and M.A. Poljakova, Method of Producing Long Round Billets with Ultrafine Granular Structure. Patent of RF No. 2446027 (2012)Google Scholar
  22. 22.
    I. Volokitina and A. Volokitin, Evolution of the Microstructure and Mechanical Properties of Copper During the Pressing–Drawing Process, Phys. Met. Metallogr., 2018, 119, p 917–921CrossRefGoogle Scholar
  23. 23.
    S. Lezhnev, A. Naizabekov, A. Volokitin, and I. Volokitina, New Combined Process Pressing–Drawing and Impact on Properties of Deformable Aluminum Wire, Proc. Eng., 2014, 81, p 1505–1510CrossRefGoogle Scholar
  24. 24.
    P. Basavaraj, U. Chakkingal, and T.S. Prasanna Kumar, Study of Channel Angle Influence on Material Flow and Strain Inhomogeneity in Equal Channel Angular Pressing Using 3D Finite Element Simulation, J. Mater. Process. Technol., 2009, 209, p 89–95CrossRefGoogle Scholar
  25. 25.
    User’s Manual, DEFORM™ Integrated 2D-3D Version 10.2.1. (Columbus, Ohio, 2012)Google Scholar
  26. 26.
    P.M. Dixit and U.S. Dixit, Modeling of Metal Forming and Machining Processes by Finite Element and Soft Computing Methods, Springer, London, 2008Google Scholar
  27. 27.
    H. Yada, N. Matsuzu, K. Nakajima, K. Watanabe, and H. Tokita, Strength and Structural-Changes Under High Strain-Rate Hot Deformation of C-Steels, Trans. ISIJ, 1983, 23, p 100–109CrossRefGoogle Scholar
  28. 28.
    S. Kobayashi, S. Oh, and T. Altan, Metal Forming and the Finite-Element Method, Oxford University Press, New York, 1989Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Abdrakhman Naizabekov
    • 1
  • Irina Volokitina
    • 1
    Email author
  • Andrey Volokitin
    • 2
  • Evgeniy Panin
    • 3
  1. 1.Rudny Industrial InstituteRudnyKazakhstan
  2. 2.Kazakh National Research Technical University Named After K.I. SatpayevAlmatyKazakhstan
  3. 3.Karaganda State Industrial UniversityTemirtauKazakhstan

Personalised recommendations