Advertisement

Effect of Cu Interlayer on the Microstructure and Strength for Brazing of Tungsten/316L Steel

  • Meng Wang
  • Yuanting Chen
  • Xianfen LiEmail author
  • Peng Hua
  • Linfeng Gao
  • Wei Zhou
  • Yucheng Wu
Article
  • 44 Downloads

Abstract

Brazing is an effective technique for joining tungsten and steel. However, the high residual stresses are produced due to the different coefficients of thermal expansions between tungsten and steel. Compared with the direct brazing with BNi-2 foil filler, BNi-2/Cu/ BNi-2 multiple interlayer was used as filler to minimize the residual stresses between tungsten and 316L steel. The brazing experiments were conducted at 1050 °C for 25 min using Cu foils with different thickness. The results show that tungsten and 316L steel have been successfully joined by brazing. The intermetallic compound of NiW formed at the W/BNi-2 interface, which was detrimental to the strength of the joint. The microhardness of different diffusion zones is higher than that of the substrates owing to the formation of intermetallic compound and solid solution. All specimens of shear testing fractured at the W/BNi-2 interface close to W substrate, and the average strength of joints was 197, 275 and 268 MPa with multiple interlayer thickness of 0.2 , 0.1 and 0.05 mm copper foil, respectively, while the average strength of joints was 143 MPa with BNi-2 foil filler. The significant increase in the joint shear strength can be ascribed to the Cu foil in the multiple interlayer because of with excellent plasticity and toughness.

Keywords

316L steel brazing microstructure shear strength tungsten 

Notes

Acknowledgment

This work is supported by National Magnetic Confinement Fusion Program (Grant Nos. 2014GB121001 and 2014GB121001B) and The Foundation of Laboratory of Nonferrous Metal material and Processing Engineering of Anhui Province (15CZS08031).

References

  1. 1.
    Z.H. Zhong, H. Jung, T. Hinoki, and A. Kohyama, Effect of Joining Temperature on the Microstructure and Strength of Tungsten/Ferritic Steel Joints Diffusion Bonded with a Nickel Interlayer, J. Mater Process. Tech, 2010, 210, p 1805–1810CrossRefGoogle Scholar
  2. 2.
    W.W. Basuki, R. Dahm, and J. Aktaa, Thermomechanical Analysis of Diffusion-Bonded Tungsten/EUROFER97 with a Vanadium Interlayer, J. Nucl. Mater., 2014, 455, p 635–639CrossRefGoogle Scholar
  3. 3.
    D. Stork, P. Agostini, J.L. Boutard, and D. Buclcthorpe, Developing Structural, High-Heat Flux and Plasma Facing Materials for a Near-Term DEMO Fusion Power Plant: The EU Assessment, J. Nucl. Mater., 2014, 455, p 277–291CrossRefGoogle Scholar
  4. 4.
    P. Norajitra, R. Giniyatulin, and W. Krauss, He-Cooled Divertor Development Towards DEMO, Fusion Sci. Technol., 2009, 56, p 1013–1017CrossRefGoogle Scholar
  5. 5.
    R.L. Klueh and A.T. Nelson, Ferritic/Martensitic Steel for Next-Generation Reactors, J. Nucl. Mater., 2007, 371, p 37–52CrossRefGoogle Scholar
  6. 6.
    Z.H. Zhong, H. Tatsuya, and N. Takashi, Microstructure and Mechanical Properties of Diffusion Bonded Joints Between Tungsten and F82H Steel Using a Titanium Interlayer, J. Alloy. Compd., 2010, 489, p 545–551CrossRefGoogle Scholar
  7. 7.
    W.W. Basuki and J. Aktaa, Investigation of Tungsten/Eurofer97 Diffusion Bonding Using Nb Interlayer, Fusion Eng. Des., 2011, 86, p 2585–2588CrossRefGoogle Scholar
  8. 8.
    Y.Z. Ma, Y.Y. Wang, W.S. Liu, and Q.S. Cai, Interface Microstructure and Mechanical Properties of Diffusion Bonded Joints Between Tungsten and Ferritic steel with Vanadium Interlayer, Trans. Weld. Insitu. China, 2013, 34, p 17–20Google Scholar
  9. 9.
    W.W. Basuki and J. Ktaa, Investigation on the Diffusion Bonding of Tungsten and EUROFER97, J. Nucl. Mater., 2011, 417, p 524–527CrossRefGoogle Scholar
  10. 10.
    Z.H. Zhong, T. Hinoki, and A. Kohyama, Effect of Holding Time on the Microstructure and Strength of Tungsten/Ferritic Steel Joints Diffusion Bonded with a Nickel Interlayer, Mater. Sci. Eng., A, 2009, 518, p 167–173CrossRefGoogle Scholar
  11. 11.
    B.A. Kalin, V.T. Fedotov, O.N. Sevrjukov, A. Moeslang, and M. Rohde, Development of Rapidly Quenched Brazing Foils to Join Tungsten Alloys with Ferritic Steel, J. Nucl. Mater., 2004, 329-333, p 1544–1548CrossRefGoogle Scholar
  12. 12.
    B.A. Kalin, V.T. Fedotov, O.N. Sevrjukov, A.N. Kalashnikov, A.N. Suchkov, A. Moeslang, and M. Rohde, Development of Brazing Foils to Join Monocrystalline Tungsten Alloys with ODS-EUROFER Steel, J. Nucl. Mater., 2007, 367-370, p 1218–1222CrossRefGoogle Scholar
  13. 13.
    T. Chehtov, J. Aktaa, and O. Kraft, Mechanical Characterization and Modeling of Brazed EUROFER-Tungsten-Joints, J. Nucl. Mater., 2007, 367-370, p 1228–1232CrossRefGoogle Scholar
  14. 14.
    S. Saito, K. Fukaya, S. Ishiyama, and K. Sato, Mechanical Properties of HIP Bonded W and Cu-Alloys Joint for Plasma Facing Components, Nucl. MaXer, 2002, 307-311, p 1542–1546CrossRefGoogle Scholar
  15. 15.
    W.S. Liu, S.H. Liu, and Y.Z. Ma, Microstructure and Properties of Tungsten/Steel Joint Brazed with Ni-Based Foil-Type Filler, Trans. Nonferr. Met. Soc. China, 2014, 24(12), p 3051–3058Google Scholar
  16. 16.
    L. Sun and Y. Qin, Effect of alloy Element Cu on Microstructure and Mechanical Properties of Stainless Steel Brazed Joints, Hot Work Technol, 2014, 43(23), p 68–71Google Scholar
  17. 17.
    H. Baker, ASM Handbook, Volume 3: Alloy Phase Diagrams [M], ASM International Press, USA, 1992Google Scholar
  18. 18.
    M. Kajihara, Analysis of Kinetics of Reactive Diffusion in a Hypothetical Binary System, Acta Mater., 2004, 52, p 1193–1200CrossRefGoogle Scholar
  19. 19.
    M. Kajihara, Relationship Between Temperature Dependence of Interdiffusion and Kinetics of Reactive Diffusion in a Hypothetical Binary System, Mater. Sci. Eng., A, 2005, 403, p 234–240CrossRefGoogle Scholar
  20. 20.
    K.E. Poulsen, S. Rubaek, and E.W. Langer, A New Intermetallic Phase in the W-Ni System, Scr. Met., 1974, 8, p 1297–1300CrossRefGoogle Scholar
  21. 21.
    S. Inomataa and M. Kajihara, Solid-State Reactive Diffusion Between Ni and W, J Alloy Compd, 2011, 509, p 4958–4966CrossRefGoogle Scholar
  22. 22.
    S. Dconzone, D.P. Butt, and A.H. Bartlett, Joining MoSi2 to 316L Stainless Steel, J. Mater. Sci., 1997, 32(13), p 3369–3374CrossRefGoogle Scholar
  23. 23.
    J.X. Zhang, R.S. Chandel, Y.Z. Chen, and H.P. Seow, Effect of Residual Stress on the Strength of an Alumina-Steel Joint by Partial Transient Liquid Phase (PTLP) Brazing, J. Mater. Process. Technol., 2002, 122(2), p 220–225CrossRefGoogle Scholar
  24. 24.
    J.W. Park, P.F. Mendez, and T.W. Eagar, Strain Energy Distribution in Ceramic-to-Metal Joints, Acta Mater., 2002, 50, p 883–899CrossRefGoogle Scholar
  25. 25.
    J.W. Park and T.W. Eagar, Strain Energy Release in Ceramic-to-Metal Joints with Patterned Interlayers, Scr. Mater., 2004, 50, p 555–559CrossRefGoogle Scholar
  26. 26.
    Y. Zhu, D. Qi, and W. Guo, The Braze Joint Between Al2O3 to 1Cr18Ni9Ti Using a Nickel Foam, Weld. World, 2015, 59(4), p 491–496CrossRefGoogle Scholar
  27. 27.
    K.M. Erskine, A.M. Meier, V.V. Joshi, and S.M. Pilgrim, The Effect of Braze Interlayer Thickness on the Mechanical Strength of Alumina Brazed with Ag-CuO Braze Alloys, Adv. Eng. Mater., 2014, 16(12), p 1442–1447CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Meng Wang
    • 1
  • Yuanting Chen
    • 1
  • Xianfen Li
    • 1
    Email author
  • Peng Hua
    • 1
  • Linfeng Gao
    • 1
  • Wei Zhou
    • 2
  • Yucheng Wu
    • 1
  1. 1.School of Materials Science and EngineeringHefei University of TechnologyHefeiChina
  2. 2.School of Mechanical and AerospaceNanyang Technology UniversitySingaporeSingapore

Personalised recommendations