Journal of Materials Engineering and Performance

, Volume 28, Issue 2, pp 1077–1093 | Cite as

Influence of Two Different Salt Mixture Combinations of Na2SO4-NaCl-NaVO3 on Hot Corrosion Behavior of Ni-Base Superalloy Nimonic263 at 800 °C

  • Venkateswararao MannavaEmail author
  • A. SambasivaRao
  • M. Kamaraj
  • Ravi Sankar Kottada


Isothermal hot corrosion behavior of Nimonic263 alloy was studied under the influence of two different salt mixtures of 87.5 wt.% Na2SO4 + 5 wt.% NaCl + 7.5 wt.% NaVO3 (3SM) and 74 wt.% Na2SO4 + 21.7 wt.% NaCl + 4.3 wt.% NaVO3 (3SM-A) and also without salt mixtures up to 500 h at 800 °C. Corrosion kinetics showed that 3SM-A is more aggressive than 3SM. Multiple oxides, spinels, sulfides, vanadate compounds, and volatile compounds were observed during various hot corrosion reactions. The volatile compounds NaClO3 and CrMoO3, and SO3 gas are attributed to the weight loss under both 3SMs. The Na2SO4 of 3SM prevailed till 400 h, but that of 3SM-A disappeared within 5 h, as established conclusively by Raman spectra analysis. The sulfides plus internal oxide zone increased with the increased exposure duration as evident from the extensive EPMA analysis. Based on the critical analysis of corrosion kinetics and detailed microstructural characterization, fluxing and sulfidation followed by oxidation are identified as plausible hot corrosion mechanisms under both 3SMs. Besides, chlorination and high-temperature oxidation mechanisms occur under 3SM-A condition.


EPMA hot corrosion Ni-base superalloys oxidation Raman spectroscopy XRD 



Authors would like to thank Dr. M. Premkumar, Scientist-D, and Mr. Nikentan Vaidya, a Technical officer of DMRL, for their help in facilitating the EPMA facility and their valuable time to conduct EPMA characterization on hot corroded specimens.

Supplementary material

11665_2019_3866_MOESM1_ESM.docx (248 kb)
Supplementary material 1 (DOCX 248 kb)


  1. 1.
    M. McLean, Nickel-Base Superalloys: Current Status and Potential, Phil. Trans. R. Soc. Lond., 1995, 351A, p 419–433Google Scholar
  2. 2.
    K.L. Luthra and H.S. Spacil, Impurity Deposits in Gas Turbines from Fuels Containing Sodium and Vanadium, J. Electrochem. Soc., 1982, 129, p 649–656CrossRefGoogle Scholar
  3. 3.
    N. Eliaz, G. Shemesh, and R.M. Latanision, Hot Corrosion in Gas Turbine Components, Eng. Fail. Anal., 2002, 9, p 31–43CrossRefGoogle Scholar
  4. 4.
    A.U. Seybolt, Contribution to the Study of Hot Corrosion, Trans. Met. Soc. AIME, 1968, 242, p 1955–1961Google Scholar
  5. 5.
    N.S. Bornstein and M.A. DeCrescente, The Role of Sodium in the Accelerated Oxidation Phenomenon Termed Sulfidation, Metall. Mater. Trans., 1971, 2, p 2875–2883CrossRefGoogle Scholar
  6. 6.
    N.S. Bornstein and M.A. DeCrescente, The Relationship Between Compounds of Sulfur and Sulfidation, Trans. Met. Soc. AIME, 1969, 245, p 1947–1952Google Scholar
  7. 7.
    J.A. Goebel, F.S. Pettit, and G.W. Goward, Mechanisms for the Hot Corrosion of Nickel-Base Alloys, Metall. Mater. Trans., 1973, 4, p 261–278CrossRefGoogle Scholar
  8. 8.
    J.A. Goebel and F.S. Pettit, Na2SO4-induced Accelerated Oxidation (Hot Corrosion) of Nickel, Metall. Mater. Trans., 1970, 1, p 1943–1954CrossRefGoogle Scholar
  9. 9.
    T.S. Sidhu, S. Prakash, and R.D. Agrawal, Hot Corrosion Behavior of HVOF-sprayed NiCrBSi Coatings on Ni- and Fe-Based Superalloys in Na2SO4-60% V2O5 Environment at 900 °C, Acta Mater., 2006, 54, p 773–784CrossRefGoogle Scholar
  10. 10.
    R.A. Mahesh, R. Jayaganthan, and S. Prakash, Study on Hot Corrosion Behavior of Ni–5Al Coatings on Ni- and Fe-Based Superalloys in an Aggressive Environment at 900 °C, J. Alloys Compd., 2008, 460, p 220–231CrossRefGoogle Scholar
  11. 11.
    S. Kamal, R. Jayaganthan, S. Prakash, and S. Kumar, Hot Corrosion Behavior of Detonation Gun Sprayed Cr3C2–NiCr Coatings on Ni and Fe-Based Superalloys in Na2SO4–60% V2O5 Environment at 900 °C, J. Alloys Compd., 2008, 463, p 358–372CrossRefGoogle Scholar
  12. 12.
    S. Kamal, R. Jayaganthan, and S. Prakash, High-Temperature Oxidation Studies of Detonation Gun Sprayed Cr3C2–NiCr Coatings on Ni and Fe-Based Superalloys in Air Under Cyclic Conditions at 900 °C, J. Alloys Compd., 2009, 472, p 378–389CrossRefGoogle Scholar
  13. 13.
    J.B. Johnson, J.R. Nicholls, R.C. Hurst, and P. Hancock, The Mechanical Properties of Surface Scales on Nickel-Base Superalloys-II. Contaminant Corrosion, Corros. Sci., 1978, 18, p 543–553CrossRefGoogle Scholar
  14. 14.
    D.J. Wortman, R.E. Fryxell, K.L. Luthra, and P.A. Bergman, Mechanism of Low-Temperature Hot Corrosion: Burner Rig Studies, Thin Solid Films, 1979, 64, p 281–288CrossRefGoogle Scholar
  15. 15.
    K.L. Luthra, Low-Temperature Hot Corrosion of Cobalt-Based Alloys: Part I. Morphology of the Reaction Product, Metall. Mater. Trans A., 1982, 13, p 1843–1852CrossRefGoogle Scholar
  16. 16.
    K.L. Luthra, Low-Temperature Hot Corrosion of Cobalt-Based Alloys: Part II. Reaction Mechanism, Metall. Mater. Trans A., 1982, 13, p 1853–1864CrossRefGoogle Scholar
  17. 17.
    S. Kameswari, The Role of NaCl in the Hot-Corrosion Behavior of the Nimonic Alloy 90, Oxid. Met., 1986, 26, p 33–44CrossRefGoogle Scholar
  18. 18.
    J.R. Nicholls and D.J. Stephenson, A Life Prediction Model for Coatings Based on the Statistical Analysis of Hot Salt Corrosion Performance, Corros. Sci., 1992, 33, p 1313–1325CrossRefGoogle Scholar
  19. 19.
    C.A.C. Sequeira and M.G. Hocking, Hot Corrosion of Nimonic 105 in Sodium Sulfate-Sodium Chloride Melts, Corrosion, 1981, 37, p 392–407CrossRefGoogle Scholar
  20. 20.
    R. Sivakumar, P.K. Sagar, and M.L. Bhatia, On the Electrochemical Nature of the Hot-Corrosion Attack in Ni-Cr Alloys, Oxid. Met., 1985, 24, p 315–330CrossRefGoogle Scholar
  21. 21.
    I. Gurrappa, Hot Corrosion Behavior of CM 247 LC Alloy in Na2SO4 and NaCl Environments, Oxid. Met., 1999, 51, p 353–382CrossRefGoogle Scholar
  22. 22.
    C.L. Zeng and T. Zhang, Electrochemical Impedance Study of Corrosion of B-1900 Alloy in the Presence of a Solid Na2SO4 and a Liquid 25 wt.% NaCl-75 wt.% Na2SO4 Film at 800 °C in air, Electrochim. Acta., 2004, 49, p 1429–1433Google Scholar
  23. 23.
    Meiheng Li, Xiaofeng Sun, Hu Wangyu, Hengrong Guan, and Shuguang Chen, Hot Corrosion of a Single Crystal Ni-Base Superalloy by Na-Salts at 900 °C, Oxid. Met., 2006, 65, p 137–150CrossRefGoogle Scholar
  24. 24.
    G.M. Liu, F. Yub, J.H. Tiana, and J.H. Ma, Influence of Pre-oxidation on the Hot Corrosion of M38G Superalloy in the Mixture of Na2SO4-NaCl Melts, Mater. Sci. Eng. A, 2008, 496, p 40–44CrossRefGoogle Scholar
  25. 25.
    T.S. Sidhu, A. Malik, S. Prakash, and R.D. Agrawal, Cyclic Oxidation Behavior of Ni- and Fe-Based Superalloys in the Air and Na2SO4-25%NaCl Molten Salt Environment at 800 °C, Int. J. Phys. Sci., 2006, 1, p 27–33Google Scholar
  26. 26.
    K. Zhang, M.M. Liu, S.L. Liu, C. Sun, and F.H. Wang, Hot Corrosion Behavior of a Cobalt-Base Super-Alloy K40S with and without NiCrAlYSi Coating, Corros. Sci., 2011, 53, p 1990–1998CrossRefGoogle Scholar
  27. 27.
    Lei Zheng, Zhang Maicanga, and Dong Jianxin, Hot Corrosion Behavior of Powder Metallurgy Rene 95 Nickel-Based Superalloy in Molten NaCl-Na2SO4 Salts, Mater. Des., 2011, 32, p 1981–1989CrossRefGoogle Scholar
  28. 28.
    G.S. Mahobia, Neeta Paulose and Vakil Singh, Hot Corrosion Behavior of Superalloy IN718 at 550 and 650 °C, J. Mater. Eng. Perform., 2013, 22, p 2418–2435CrossRefGoogle Scholar
  29. 29.
    V. Mannava, A.S. Rao, N. Paulose, M. Kamaraj, and R.S. Kottada, Hot Corrosion Studies on Ni-Base Superalloy at 650 °C Under Marine-like Environment Conditions Using Three Salt Mixture (Na2SO4+NaCl+NaVO3), Corros. Sci., 2016, 105, p 109–119CrossRefGoogle Scholar
  30. 30.
    M.S. Doolabi, B. Ghasemi, S.K. Sadrnezhaad, A. Habibollahzadeh, and K. Jafarzadeh, Hot Corrosion Behavior and Near-Surface Microstructure of a Low-Temperature High-Activity Cr-Aluminide Coating on Inconel 738LC Exposed to Na2SO4, Na2SO4 + V2O5, and Na2SO4 + V2O5 + NaCl at 900 °C, Corros. Sci., 2017, 128, p 42–53CrossRefGoogle Scholar
  31. 31.
    Dhananjay Pradhan, G.S. Mahobia, K. Chattopadhyay, and V. Singh, Effect of Surface Roughness on Corrosion Behavior of the Superalloy IN718 in the Simulated Marine Environment, J. Alloys Compd., 2018, 740, p 250–263CrossRefGoogle Scholar
  32. 32.
    D. Pradhan, G.S. Mahobia, K. Chattopadhyay, and V. Singh, Severe Hot Corrosion of the Superalloy IN718 in Mixed Salts of Na2SO4 and V2O5 at 750 °C, J. Mater. Eng. Perform., 2018, 27, p 4235–4243CrossRefGoogle Scholar
  33. 33.
    F. Saegusa and D.A. Shores, The Corrosion Resistance of Superalloys in Temperature Range of 800-1300 °F, J. Mater. Energy Syst., 1982, 4, p 16–27CrossRefGoogle Scholar
  34. 34.
    A. Manonukul and D. Knowles, a Physically-Based Model for Creep in Nickel-Base Superalloy C263 both above and below the Gamma Solvus, Acta Mater., 2002, 50, p 2917–2931CrossRefGoogle Scholar
  35. 35.
    V. Mannava, A.V. Swaminathan, M. Kamaraj, and R.S. Kottada, An Innovative Spraying Setup to Obtain Uniform Salt(s) Mixture Deposition to Investigate Hot Corrosion, Rev. Sci. Instrum., 2016, 87, p 25107CrossRefGoogle Scholar
  36. 36.
    B.D. Hosterman, Raman Spectroscopic Study of Solid Solution Spinel Oxides, Ph.D. Thesis, University of Nevada, Las Vegas, 2016.Google Scholar
  37. 37.
    D. Zákutná, A. Repko, I. Matulková, D. Nižňanský, A. Ardu, C. Cannas, A. Mantlíková, and J. Vejpravová, Hydrothermal Synthesis, Characterization, and Magnetic Properties of Cobalt Chromite Nanoparticles, J. Nanopart. Res., 2014, 16(2251), p 1–14Google Scholar
  38. 38.
    D.W. Bishop, P.S. Thomas, and A.S. Ray, Raman Spectra of Nickel (II) Sulfide, Mater. Res. Bull., 1998, 33, p 1303–1306CrossRefGoogle Scholar
  39. 39.
    B.L. Hurley, S. Qiu, and R.G. Buchheit, Raman Spectroscopy Characterization of Aqueous Vanadate Species Interaction with Aluminum Alloy 2024-T3 Surfaces, J. Electrochem. Soc., 2011, 158, p C125–C131CrossRefGoogle Scholar
  40. 40.
    Laura E. Briand, Jih-Mirn Jehng, Laura Cornaglia, Andrew M. Hirt, and Israel E. Wachs, Quantitative Determination of the Number of Surface Active Sites and the Turnover Frequencies for Methanol Oxidation Over Bulk Metal Vanadates, Catal. Today, 2003, 78, p 257–268CrossRefGoogle Scholar
  41. 41.
    V.G. Hadjiev, M.N. Iliev, and I.V. Vergilov, The Raman Spectra of Co3O4, J. Phys. C: Solid State Phys., 1988, 21, p L199–L201CrossRefGoogle Scholar
  42. 42.
    B.-K. Choi and D.J. Lockwood, Raman Spectrum of Na2SO4 (Phases I, and II), Solid State Commun., 1990, 76, p 863–866CrossRefGoogle Scholar
  43. 43.
    B.-K. Choi and D.J. Lockwood, Raman Spectrum of Na2SO4 (Phase V), Solid State Commun., 1989, 72, p 133–137CrossRefGoogle Scholar
  44. 44.
    K.S. Ghosh and S. Raghavan, Fusion Point Diagram of Na2SO4-NaVO3-NaCl System, Trans. Indian Inst. Metals., 1995, 48, p 401–408Google Scholar
  45. 45.
    P.S. Sidky and M.G. Hocking, The Hot Corrosion of Ni-Based Ternary Alloys and Superalloys for Application in Gas Turbines Employing Residual Fuels, Corros. Sci., 1987, 27, p 499–530CrossRefGoogle Scholar
  46. 46.
    O. Kubaschewski and C.B. Alocock, Metallurgical Thermo-Chemistry, revised, 5th ed., Pergamon Press Publisher, New York, 1983Google Scholar
  47. 47.
    C.C. Tsaur, J.C. Rock, C.J. Wang, and Y.H. Su, The Hot Corrosion of 310 Stainless Steel with Pre-coated NaCl/Na2SO4 Mixtures at 750 °C, Mater. Chem. Phys., 2005, 89, p 445–453CrossRefGoogle Scholar
  48. 48.
    R.A. Rapp, Hot Corrosion of Materials: a Fluxing Mechanism?, Corros. Sci., 2002, 44, p 209–221CrossRefGoogle Scholar
  49. 49.
    M. Seiersten and P. Kofstad, The Effect of SO3 on Vanadate-Induced Hot Corrosion, High Temp. Technol., 1984, 5, p 115–122CrossRefGoogle Scholar
  50. 50.
    E. Otero, A. Pardo, J. Hernaez, and F.J. Perez, The Hot Corrosion of in-657 Superalloy in Na2SO4-V2O5 Melt Eutectic, Corros. Sci., 1991, 32, p 677–683CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Venkateswararao Mannava
    • 1
    Email author
  • A. SambasivaRao
    • 2
  • M. Kamaraj
    • 1
  • Ravi Sankar Kottada
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.Structural Failure Analysis GroupDefence Metallurgical Research LaboratoryHyderabadIndia

Personalised recommendations