Flow Stress Behavior, Constitutive Modeling, and Microstructural Characteristics of DP 590 Steel at Elevated Temperatures

  • Sandeep Pandre
  • Nitin KotkundeEmail author
  • Prathamesh Takalkar
  • Ayush Morchhale
  • Ravindran Sujith
  • Swadesh Kumar Singh


In the present study, the flow stress behavior and material properties of dual-phase (DP) 590 steel have been investigated for different process parameters such as temperature (room temperature (RT) to 400 °C), strain rate (0.0001-0.01 s−1), and three different sheet orientations, viz., rolling direction (RD), transverse direction (TD), and normal direction (ND). The flow stress increases with an increase in temperature and strain rate. The yield and ultimate stress also decreased by approximately 13.85 and 13.45%, respectively, with an increase in temperature from RT to 400 °C; but no particular trend was observed for elongation. Subsequently, microstructural and fractographic studies were conducted using a scanning electron microscope. The volume fraction of the martensitic phase seems to decrease with an increase in temperature. In addition, from the electron backscattering diffraction studies, an increase in the ratio of high-angle grain boundaries was observed with an increase in the grain size of the material. The ductile type of failure was observed at all testing conditions. Furthermore, an investigation of strain hardening behavior using Swift and Voce modeling was carried out for DP590 steel. Three stages of hardening were observed in the case of both the applied strain hardening models. Predicted flow stress with the Voce model displayed a good agreement with the experimental data. The combined effect of temperature and strain rate was considered by formulating an Arrhenius-based Sellar model for the flow stress prediction.


constitutive modeling DP 590 steel flow stress material properties microstructure analysis strain hardening behavior 



Authors are thankful to BITS Pilani, Hyderabad campus, for providing the scanning electron microscope (SEM) facility and tensile testing facility in Central Analytical Laboratory (CAL).


  1. 1.
    R. Kuziak, R. Kawalla, and S. Waengler, Advanced High Strength Steels for Automotive Industry, Arch. Civ. Mech. Eng., 2008, 8(2), p 103–117. CrossRefGoogle Scholar
  2. 2.
    C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design, Annu. Rev. Mater. Res., 2015, 45(1), p 391–431. CrossRefGoogle Scholar
  3. 3.
    Q. Lai, L. Brassart, O. Bouaziz, M. Gouné, M. Verdier, G. Parry, A. Perlade, Y. Bréchet, and T. Pardoen, Influence of Martensite Volume Fraction and Hardness on the Plastic Behavior of Dual-Phase Steels: Experiments and Micromechanical Modeling, Int. J. Plast, 2016, 80, p 187–203. CrossRefGoogle Scholar
  4. 4.
    S. Sodjit and V. Uthaisangsuk, A Micromechanical Flow Curve Model for Dual Phase Steels, J. Met. Mater. Miner., 2012, 22(1), p 87–97Google Scholar
  5. 5.
    G. Avramovic-Cingara, Y. Ososkov, M.K. Jain, and D.S. Wilkinson, Effect of Martensite Distribution on Damage Behaviour in DP600 Dual Phase Steels, Mater. Sci. Eng. A, 2009, 516(1), p 7–16. CrossRefGoogle Scholar
  6. 6.
    K. Peng, K. Qian, and W. Chen, Effect of Dynamic Strain Aging on High Temperature Properties of Austenitic Stainless Steel, Mater. Sci. Eng. A, 2004, 379(1), p 372–377. CrossRefGoogle Scholar
  7. 7.
    B. Bayramin, C. Şimşir, and M. Efe, Dynamic Strain Aging in DP Steels at Forming Relevant Strain Rates and Temperatures, Mater. Sci. Eng. A, 2017, 704(Sep), p 164–172CrossRefGoogle Scholar
  8. 8.
    J.H. Hollomon, Tensile Deformation, AIME Trans., 1945, 12(4), p 1–22Google Scholar
  9. 9.
    P. Ludwik, Elemente Der Technologischen Mechanik, Springer, Berlin, 2013Google Scholar
  10. 10.
    H.W. Swift, Plastic Instability under Plane Stress, J. Mech. Phys. Solids, 1952, 1(1), p 1–18CrossRefGoogle Scholar
  11. 11.
    E. Voce, The Relationship Between Stress and Strain for Homogeneous Deformation, J. Inst. Met., 1948, 74, p 537–562Google Scholar
  12. 12.
    C. Crussard and B. Jaoul, Contribution à l’étude de la forme des courbes de traction des métaux et à son interprétation physique, Rev. Met. Paris, 1950, 47(8), p 589–600. CrossRefGoogle Scholar
  13. 13.
    S.V. Ramani and P. Rodriguez, The Work-Hardening Parameters of Polycrystalline Materials, Scr. Metall., 1970, 4(10), p 755–760. CrossRefGoogle Scholar
  14. 14.
    H.J. Kleemola and M.A. Nieminen, On the Strain-Hardening Parameters of Metals, MS, 1974, 5(8), p 1863–1866. CrossRefGoogle Scholar
  15. 15.
    N.S. Mishra, S. Mishra, and V. Ramaswamy, Analysis of the Temperature Dependence of Strain-Hardening Behavior in High-Strength Steel, MTA, 1989, 20(12), p 2819. CrossRefGoogle Scholar
  16. 16.
    H. Paruz, D.V. Edmonds, and P. Road, The Strain Hardening Behaviour of Dual-Phase Steel, Mater. Sci. Eng. A, 1989, 17, p 67–74CrossRefGoogle Scholar
  17. 17.
    F. Ozturk, A. Polat, S. Toros, and R.C. Picu, Strain Hardening and Strain Rate Sensitivity Behaviors of Advanced High Strength Steels, J. Iron Steel Res. Int., 2013, 20(6), p 68–74CrossRefGoogle Scholar
  18. 18.
    Y.C. Lin and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759. CrossRefGoogle Scholar
  19. 19.
    A.K. Gupta, H.N. Krishnamurthy, P. Puranik, S.K. Singh, and A. Balu, An Exponential Strain Dependent Rusinek-Klepaczko Model for Flow Stress Prediction in Austenitic Stainless Steel 304 at Elevated Temperatures, J. Mater. Res. Technol., 2014, 3(4), p 370–377. CrossRefGoogle Scholar
  20. 20.
    J. Liao, J.A. Sousa, A.B. Lopes, X. Xue, F. Barlat, and A.B. Pereira, Mechanical, Microstructural Behaviour and Modelling of Dual Phase Steels under Complex Deformation Paths, Int. J. Plast, 2017, 93, p 269–290. CrossRefGoogle Scholar
  21. 21.
    C.M. Sellars and W.J.M. Tegart, Relationship between Strength and Structure in Deformation at Elevated Temperatures, Mem. Sci. Rev. Met., 1966, 63(9), p 731–746Google Scholar
  22. 22.
    A. Laasraoui and J.J. Jonas, Prediction of Steel Flow Stresses at High Temperatures and Strain Rates, Metall. Trans. A, 1991, 22(7), p 1545–1558CrossRefGoogle Scholar
  23. 23.
    T. Kugler and K. Palkowski, Estimation of Activation Energy for Calculating the Hot Workability Properties of Metals, Metallurgija, 2004, 43(1), p 267–272Google Scholar
  24. 24.
    S. Wang, L.G. Hou, J.R. Luo, J.S. Zhang, and L.Z. Zhuang, Characterization of Hot Workability in AA 7050 Aluminum Alloy Using Activation Energy and 3-D Processing Map, J. Mater. Process. Technol., 2015, 225, p 110–121. CrossRefGoogle Scholar
  25. 25.
    N. Kotkunde, A. Badrish, A. Morchhale, P. Takalkar, and S.K. Singh, Warm Deep Drawing Behavior of Inconel 625 Alloy Using Constitutive Modelling and Anisotropic Yield Criteria, Int. J. Mater. Form., 2019, CrossRefGoogle Scholar
  26. 26.
    K. Son, M. Kim, S. Kim, and J. Lee, Evaluation of Hot Deformation Characteristics in Modified AA5052 Using Processing Map and Activation Energy Map Under Deformation Heating, J. Alloys Compd. (2018) 1–37.Google Scholar
  27. 27.
    M.S. Duesbery, Dislocation Motion, Constriction and Cross-Slip in FCC Metals, Modell. Simul. Mater. Sci. Eng., 1998, 6, p 35–49. CrossRefGoogle Scholar
  28. 28.
    G. Mahalle, N. Kotkunde, A.K. Gupta, R. Sujith, S.K. Singh, and Y.C. Lin, Microstructure Characteristics and Comparative Analysis of Constitutive Models for Flow Stress Prediction of Inconel 718 Alloy, J. Mater. Eng. Perform, 2019, CrossRefGoogle Scholar
  29. 29.
    Y.V.R.K. Prasad, K.P. Rao, and S. Sasidhara, Ed., Hot Working Guide: A Compendium of Processing Maps, Second edition, first printing, ASM International, Materials Park, 2015Google Scholar
  30. 30.
    J.M. Robinson and M.P. Shaw, Microstructural and Mechanical Influences on Dynamic Strain Aging Phenomena, Int. Mater. Rev., 1994, 39(3), p 113–122. CrossRefGoogle Scholar
  31. 31.
    R.M.C. William and F. Hosford, Metal Forming Mechanics and Metallurgy, 3rd ed., Cambridge University Press, Cambridge, 2007Google Scholar
  32. 32.
    L.M. Najib, A. Alisibramulisi, N.M. Amin, I.A.A. Bakar, and S. Hasim, “The Effect of Rolling Direction to the Tensile Properties of AA5083 Specimen,” InCIEC 2014, R. Hassan, M. Yusoff, A. Alisibramulisi, N. Mohd Amin, and Z. Ismail, Eds., Springer Singapore, 2015, p. 779–787.Google Scholar
  33. 33.
    Y.C. Lin, X.-Y. Wu, X.-M. Chen, J. Chen, D.-X. Wen, J.-L. Zhang, and L.-T. Li, EBSD Study of a Hot Deformed Nickel-Based Superalloy, J. Alloys Compd., 2015, 640, p 101–113. CrossRefGoogle Scholar
  34. 34.
    Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, and E.V. Pereloma, Microstructures and Mechanical Properties of Dual Phase Steel Produced by Laboratory Simulated Strip Casting, Mater. Des., 2015, 88, p 537–549CrossRefGoogle Scholar
  35. 35.
    T. Sirinakorn, S. Wongwises, and V. Uthaisangsuk, A Study of Local Deformation and Damage of Dual Phase Steel, Mater. Des., 2014, 64, p 729–742CrossRefGoogle Scholar
  36. 36.
    C.H. Crussard and B. Jaoul, Contribution of the Research on Stress-Strain Curves of Metals and Its Physical Interpretation, Rev. Metall, 1950, 47, p 589–600CrossRefGoogle Scholar
  37. 37.
    A.G. Kalashami, A. Kermanpur, A. Najafizadeh, and Y. Mazaheri, Correlation of Microstructure and Strain Hardening Behavior in the Ultrafine-Grained Nb-Bearing Dual Phase Steels, Materials Science & Engineering A, 2016, 678, p 215–226CrossRefGoogle Scholar
  38. 38.
    C.J. Tang, C.J. Shang, S.L. Liu, H.L. Guan, R.D.K. Misra, and Y.B. Chen, Effect of Volume Fraction of Bainite on Strain Hardening Behavior and Deformation Mechanism of F/B Multi-Phase Steel, Materials Science & Engineering A, 2018, 729, p 1–518CrossRefGoogle Scholar
  39. 39.
    H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Metall., 1981, 29(11), p 1865–1875. CrossRefGoogle Scholar
  40. 40.
    H. Mecking and U.F. Kocks, Kinetics of Flow and Strain Hardening, Acta Metallurgica, 1981, 29, p 1865–1875CrossRefGoogle Scholar
  41. 41.
    M. Wang, W. Wang, Z. Liu, C. Sun, and L. Qian, Hot Workability Integrating Processing and Activation Energy Maps of Inconel 740 Superalloy, Mater. Today Commun., 2018, 14, p 188–198. CrossRefGoogle Scholar
  42. 42.
    R. Gujrati, C. Gupta, J.S. Jha, S. Mishra, and A. Alankar, Understanding Activation Energy of Dynamic Recrystallization in Inconel 718, Mater. Sci. Eng., A, 2019, 744, p 638–651. CrossRefGoogle Scholar
  43. 43.
    S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang, and L.Z. Zhuang, Identification of the Threshold Stress and True Activation Energy for Characterizing the Deformation Mechanisms During Hot Working, Mater. Des., 2017, 113, p 27–36. CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Sandeep Pandre
    • 1
  • Nitin Kotkunde
    • 1
    Email author
  • Prathamesh Takalkar
    • 1
  • Ayush Morchhale
    • 1
  • Ravindran Sujith
    • 1
  • Swadesh Kumar Singh
    • 2
  1. 1.Mechanical Engineering DepartmentBITS-Pilani, Hyderabad CampusHyderabadIndia
  2. 2.Mechanical Engineering DepartmentGRIETHyderabadIndia

Personalised recommendations