Advertisement

Surface Integrity of Ni-Rich NiTi Shape Memory Alloy at Optimized Level of Wire Electric Discharge Machining Parameters

  • Himanshu BisariaEmail author
  • Pragya Shandilya
Article
  • 15 Downloads

Abstract

The concern of this experimental work is to study the surface integrity aspects such as surface morphology, three-dimensional surface topography, recast layer, phase analysis, and micro-hardness for Ni55.95Ti44.05 shape memory alloy at the optimized level of wire electric discharge machining parameters. A mathematical model was developed for surface roughness and material removal rate considering servo voltage, pulse on time, wire tension, wire feed rate, and pulse off time using response surface methodology technique. In order to obtain the optimized parameters, multi-objective optimization technique grey relation analysis was utilized. The adequacy of the developed model was also checked by analysis of variance. At optimal parameters setting, i.e., pulse on time 123 µs, pulse off time 58 µs, servo voltage 50 V, wire tension 3 N, and wire feed rate 5 m/min, maximum material removal rate (8.223 mm3/min) and minimum surface roughness (1.93 µm) were achieved. Surface characteristics of machined surface divulge the presence of discharge craters, debris, molten droplets, micro-voids, spherical nodules, and cracks. A recast layer of thickness 19 µm with approximately 21% of foreign elements was deposited on the machined surface at optimized parameters, whereas the micro-hardness of the outer machined surface was found to be increased approximately 1.98 times as compared to micro-hardness of bulk material. X-ray diffraction analysis shows the presence of the following compounds on the machined surface NiTi, Ni4Ti3, Ti4O3, Cu5Zn8, Ni(TiO3), and NiZn.

Keywords

optimization RSM shape memory alloy surface integrity aspects WEDM 

List of Symbols

TON

Pulse on time (μs)

TOFF

Pulse off time (μs)

Wg

Spark gap

d

Wire diameter

Abbreviations

WEDM

Wire electric discharge machining

SMA

Shape memory alloy

SV

Servo voltage (V)

WT

Wire tension (N)

WF

Wire feed rate (m/min)

MRR

Material removal rate (mm3/min)

Ra

Surface roughness (μm)

RSM

Response surface methodology

CCD

Central composite design

SEM

Scanning electron microscope

EDS

Energy-dispersive spectroscopy

XRD

x-ray diffraction

GRA

Grey relation analysis

GRG

Grey relation coefficient

GRC

Grey relation grade

ANOVA

Analysis of variance

SS

Sum of square

MS

Mean square

DOF

Degree of freedom

CI

Confidence interval

Notes

References

  1. 1.
    J.M. Jani, M. Leary, A. Subic, and M.A. Gibson, A Review of Shape Memory Alloy Research, Applications and Opportunities, Mater. Des., 2014, 56, p 1078–1113CrossRefGoogle Scholar
  2. 2.
    C. Velmurugan, V. Senthilkumar, S. Dinesh, and D. Arulkirubakaran, Machining of NiTi-Shape Memory Alloys—A Review, Mach. Sci. Technol., 2017, 22(3), p 355–401CrossRefGoogle Scholar
  3. 3.
    H. Bisaria and P. Shandilya, Experimental Studies on Electrical Discharge Wire Cutting of Ni-Rich NiTi Shape Memory Alloy, Mater. Manuf. Process., 2017, 33(9), p 977–985CrossRefGoogle Scholar
  4. 4.
    B. Ramachandran, C.H. Chen, P.C. Chang, Y.K. Kuo, C. Chen, and S.K. Wu, Thermal and Transport Properties of As-Grown Ni-Rich TiNi Shape Memory Alloys, Intermetallics, 2015, 60, p 79–85CrossRefGoogle Scholar
  5. 5.
    H. Bisaria and P. Shandilya, The Machining Characteristics and Surface Integrity of Ni-Rich NiTi Shape Memory Alloy Using Wire Electric Discharge Machining, Proc. IMechE C J. Mech. Eng. Sci., 2018,  https://doi.org/10.1177/0954406218763447 CrossRefGoogle Scholar
  6. 6.
    A. Rao, A.R. Srinivasa, and J.N. Reddy, Introduction to Shape Memory Alloys, Design of Shape Memory Alloy (SMA) Actuators, Springer, New York, 2015CrossRefGoogle Scholar
  7. 7.
    P. Shandilya, H. Bisaria, and P.K. Jain, Parametric Study on Recast Layer During Electric Discharge Wire Cutting (EDWC) of Ni-Rich NiTi Shape Memory Alloy, J. Micro Manuf., 2018, 1(2), p 134–141Google Scholar
  8. 8.
    M. Manjaiah, S. Narendranath, and S. Basavarajappa, Review on Non-conventional Machining of Shape Memory Alloys, Trans. Nonferr. Met. Soc., 2014, 24, p 12–21CrossRefGoogle Scholar
  9. 9.
    M. Karimzadeh, M.R. Aboutalebi, M.T. Salehi, S.M. Abbasi, and M. Morakabati, Adjustment of Aging Temperature for Reaching Superelasticity in Highly Ni-Rich Ti-51.5Ni NiTi Shape Memory Alloy, Mater. Manuf. Process., 2016, 31, p 1014–1021CrossRefGoogle Scholar
  10. 10.
    K. Weinert, V. Petzoldt, and D. Kotter, Turning and Drilling of NiTi Shape Memory Alloys, CIRP Ann. Manuf. Technol., 2004, 53, p 65–68CrossRefGoogle Scholar
  11. 11.
    Y. Guo, A. Klink, C. Fu, and J. Snyder, Machinability and Surface Integrity of Nitinol Shape Memory Alloy, CIRP Ann. Manuf. Technol., 2013, 62, p 83–86CrossRefGoogle Scholar
  12. 12.
    S.F. Hsieh, S.L. Chen, H.C. Lin, M.H. Lin, and S.Y. Chiou, The Machining Characteristics and Shape Recovery Ability of Ti-Ni-X (X = Zr, Cr) Ternary Shape Memory Alloys Using the Wire Electro-discharge Machining, Int. J. Mach. Tools Manuf., 2009, 49, p 509–514CrossRefGoogle Scholar
  13. 13.
    M.J. Haddad, F. Alihoseini, M. Hadi, M. Hadad, A.F. Tehrani, and A. Mohammadi, An Experimental Investigation of Cylindrical Wire Electrical Discharge Turning Process, Int. J. Adv. Manuf. Technol., 2010, 46, p 1119–1132CrossRefGoogle Scholar
  14. 14.
    H. Bisaria and P. Shandilya, Experimental Investigation on Wire Electric Discharge Machining (WEDM) of Nimonic C-263 Superalloy, Mater. Manuf. Process., 2019, 34(1), p 83–92CrossRefGoogle Scholar
  15. 15.
    K. Mouralova, J. Kovar, L. Klakurkova, and T. Prokes, Effect of Width of Kerf on Machining Accuracy and Subsurface Layer After WEDM, J. Mater. Eng. Perform., 2018, 27, p 1908.  https://doi.org/10.1007/s11665-018-3239-4 CrossRefGoogle Scholar
  16. 16.
    A. Giridharan and G.L. Samuel, Analysis on the Effect of Discharge Energy on Machining Characteristics of Wire Electric Discharge Turning Process, Proc. IMechE B J. Eng. Manuf., 2015, 230(11), p 2064–2081CrossRefGoogle Scholar
  17. 17.
    S. Bhattacharya, G.J. Abraham, A. Mishra, V. Kain, and G.K. Dey, Corrosion Behavior of Wire Electrical Discharge Machined Surfaces of P91 Steel, J. Mater. Eng. Perform., 2018, 27, p 4561.  https://doi.org/10.1007/s11665-018-3558-5 CrossRefGoogle Scholar
  18. 18.
    M. Manjaiah, S. Narendranath, S. Basavarajappa, and V.N. Gaitonde, Effect of Electrode Material in Wire Electro Discharge Machining Characteristics of Ti50Ni50−xCux Shape Memory Alloy, Precis. Eng., 2015, 41, p 68–77CrossRefGoogle Scholar
  19. 19.
    J.F. Liu, Y.B. Guo, T.M. Butler, and M.L. Weaver, Crystallography, Compositions, and Properties of White Layer by Wire Electrical Discharge Machining of Nitinol Shape Memory Alloy, Mater. Des., 2016, 109, p 1–9CrossRefGoogle Scholar
  20. 20.
    G. Rajyalakshmi and P.V. Ramaiah, Multiple Process Parameter Optimization of Wire Electrical Discharge Machining on Inconel 825 Using Taguchi Grey Relational Analysis, Int. J. Adv. Manuf. Technol., 2013, 69, p 1249–1262CrossRefGoogle Scholar
  21. 21.
    A. Saha and S.C. Mondal, Experimental Investigation and Modelling of WEDM Process for Machining Nano-structured Hardfacing Material, J. Braz. Soc. Mech. Sci. Eng., 2017, 39, p 3439–3455CrossRefGoogle Scholar
  22. 22.
    H. Majumder, T.R. Paul, V. Dey, P. Dutta, and A. Saha, Use of PCA-Grey Analysis and RSM to Model Cutting Time and Surface Finish of Inconel 800 During Wire Electro Discharge Cutting, Measurement, 2017, 107, p 19–30CrossRefGoogle Scholar
  23. 23.
    D.C. Montgomery, Design and Analysis of Experiments, 4th ed., Wiley, New York, 2001Google Scholar
  24. 24.
    H. Bisaria and P. Shandilya, Study on Effect of Machining Parameters on Performance Characteristics of Ni-Rich NiTi Shape Memory Alloy During Wire Electric Discharge Machining, Mater. Today Proc., 2018, 5, p 3316–3324CrossRefGoogle Scholar
  25. 25.
    S. Narendranath, M. Manjaiah, S. Basavarajappa, and V.N. Gaitonde, Experimental Investigations on Performance Characteristics in Wire Electro Discharge Machining of Ti50Ni42.4Cu7.6 Shape Memory Alloy, Proc. IMechE B J. Eng. Manuf., 2013, 227(8), p 1180–1187CrossRefGoogle Scholar
  26. 26.
    M. Manjaiah, S. Narendranath, S. Basavarajappa, and V.N. Gaitonde, Wire Electric Discharge Machining Characteristics of Titanium Nickel Shape Memory Alloy, Trans. Nonferr. Met. Soc., 2014, 24, p 3201–3209CrossRefGoogle Scholar
  27. 27.
    N. Sharma, T. Raj, and K.K. Jangra, Parameter Optimization and Experimental Study on Wire Electrical Discharge Machining of Porous Ni40Ti60 Alloy, Proc. IMechE B J. Eng. Manuf., 2015, 231(6), p 956–970CrossRefGoogle Scholar
  28. 28.
    M. Manjaiah, S. Narendranath, and S. Basavarajappa, Wire Electro Discharge Machining Performance of TiNiCu Shape Memory Alloy, Silicon, 2016, 8, p 467–475CrossRefGoogle Scholar
  29. 29.
    S. Datta, A. Bandyopadhyay, and P.K. Pal, Solving Multi-criteria Optimization Problem in Submerged Arc Welding Consuming a Mixture of Fresh Flux and Fused Slag, Int. J. Adv. Manuf. Technol., 2008, 35, p 935–942CrossRefGoogle Scholar
  30. 30.
    D. Ulutan and T. Ozel, Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review, Int. J. Mach. Tools Manuf., 2011, 51, p 250–280CrossRefGoogle Scholar
  31. 31.
    A. Thakur and S. Gangopadhyay, State-of-the-Art in Surface Integrity in Machining of Nickel-Based Super Alloys, Int. J. Mach. Tools Manuf., 2016, 100, p 25–54CrossRefGoogle Scholar
  32. 32.
    H. Bisaria and P. Shandilya, Study on Crater Depth During Material Removal in WEDC of Ni-Rich Nickel–Titanium Shape Memory Alloy, J Braz. Soc. Mech. Sci. Eng., 2019, 41, p 157.  https://doi.org/10.1007/s40430-019-1655-5 CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentMotilal Nehru National Institute of Technology AllahabadAllahabadIndia

Personalised recommendations