Cracking in Calcium Aluminate Cement Pastes Induced at Different Exposure Temperatures

  • John F. Zapata
  • Maryory Gomez
  • Henry A. ColoradoEmail author


Different formulations of calcium aluminate cement (CAC) pastes containing 51 and 71 wt.% Al2O3 were exposed to high-temperature environments so that the damage suffered under different thermal conditions could be studied. Samples had water-to-cement (W/C) ratios of 0.25, 0.30 and 0.40. Both the raw cement powders and their corresponding hydrated samples were characterized using scanning electron microscopy, x-ray diffraction (with Rietveld refinement), Fourier-transform infrared spectroscopy and x-ray fluorescence. All samples were exposed to oxidative environments for 1 h at 500, 800 and 1000 °C in a furnace with an air atmosphere. Hot samples were slowly cooled down in order to avoid the damage induced by thermal contraction. The damage that occurred while the samples were in the furnace and exposed to high temperatures could then be analyzed. The damage was examined by digital image analysis and the length of the cracks was fitted to Weibull distributions using Monte Carlo simulations.


calcium aluminate cement cement pastes cracking damage gibbsite mechanical behavior Weibull distribution 



  1. 1.
    K.L. Scrivener, J.-L. Cabiron, and R. Letourneux, High-Performance Concretes from Calcium Aluminate Cements, Cem. Concr. Res., 1999, 29(8), p 1215–1223CrossRefGoogle Scholar
  2. 2.
    W. Khaliq and H.A. Khan, High Temperature Material Properties of Calcium Aluminate Cement Concrete, Constr. Build. Mater., 2015, 94, p 475–487CrossRefGoogle Scholar
  3. 3.
    F.A. Cardoso, M.D.M. Innocentini, M.M. Akiyoshi, and V.C. Pandolfelli, Effect of Curing Time on the Properties of CAC Bonded Refractory Castables, J. Eur. Ceram. Soc., 2004, 24(7), p 2073–2078CrossRefGoogle Scholar
  4. 4.
    V. Antonovič, J. Kerienė, R. Boris, and M. Aleknevičius, The Effect of Temperature on the Formation of the Hydrated Calcium Aluminate Cement Structure, Procedia Eng., 2013, 57, p 99–106CrossRefGoogle Scholar
  5. 5.
    N. Ukrainczyk, T. Matusinovic, S. Kurajica, B. Zimmermann, and J. Sipusic, Dehydration of a Layered Double Hydroxide—C2AH8, Thermochim. Acta, 2007, 464(1–2), p 7–15CrossRefGoogle Scholar
  6. 6.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science (80), 2002, 296(5566), p 280–284CrossRefGoogle Scholar
  7. 7.
    W.D. Kingery, Factors Affecting Thermal Stress Resistance of Ceramic Materials, J. Am. Ceram. Soc., 1955, 38(1), p 3–15CrossRefGoogle Scholar
  8. 8.
    D.P.H. Hasselman, Elastic Energy at Fracture and Surface Energy as Design Criteria for Thermal Shock, J. Am. Ceram. Soc., 1963, 46(11), p 535–540CrossRefGoogle Scholar
  9. 9.
    D.P.H. Hasselman, Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics, J. Am. Ceram. Soc., 1969, 52(11), p 600–604CrossRefGoogle Scholar
  10. 10.
    J. Nakayama and M. Ishizuka, Experimental Evidence for Thermal Shock Damage Resistance, Am. Ceram. Soc. Bull., 1966, 45(7), p 666Google Scholar
  11. 11.
    T.J. Lu and N.A. Fleck, The Thermal Shock Resistance of Solids, Acta Mater., 1998, 46(13), p 4755–4768CrossRefGoogle Scholar
  12. 12.
    M.I.K. Collin and D.J. Rowcliffe, Influence of Thermal Conductivity and Fracture Toughness on the Thermal Shock Resistance of Alumina—Silicon–Carbide–Whisker Composites, J. Am. Ceram. Soc., 2001, 84(6), p 1334–1340CrossRefGoogle Scholar
  13. 13.
    H.-A. Bahr, G. Fischer, and H.-J. Weiss, Thermal-Shock Crack Patterns Explained by Single and Multiple Crack Propagation, J. Mater. Sci., 1986, 21(8), p 2716–2720CrossRefGoogle Scholar
  14. 14.
    H.-A. Bahr, H. Balke, M. Kuna, and H. Liesk, Fracture Analysis of a Single Edge Cracked Strip Under Thermal Shock, Theor. Appl. Fract. Mech., 1987, 8(1), p 33–39CrossRefGoogle Scholar
  15. 15.
    D.R. Jenkins, Optimal Spacing and Penetration of Cracks in a Shrinking Slab, Phys. Rev. E, 2005, 71(5), p 56117CrossRefGoogle Scholar
  16. 16.
    B. Bourdin, G.A. Francfort, and J.-J. Marigo, The Variational Approach to Fracture, J. Elast., 2008, 91(1–3), p 5–148CrossRefGoogle Scholar
  17. 17.
    A. Combescure, R. de Borst, and T. Belytschko, Symposium on Discretization Methods for Evolving Discontinuities.Google Scholar
  18. 18.
    H. Le Doussal et al., Comportement des produits refractaires soumis a des solicitations thermomechanique severes, Bull. Soc. Fr. Ceram, 1979, 124, p 29–55Google Scholar
  19. 19.
    M.J. Heap et al., The influence of Thermal-Stressing (up to 1000 °C) on the Physical, Mechanical, Chemical Properties of Siliceous-Aggregate, High-Strength Concrete, Constr. Build. Mater., 2013, 42, p 248–265CrossRefGoogle Scholar
  20. 20.
    K. Sakr and E. El-Hakim, Effect of High Temperature or Fire on Heavy Weight Concrete Properties, Cem. Concr. Res., 2005, 35(3), p 590–596CrossRefGoogle Scholar
  21. 21.
    M.H.B. Nasseri, A. Schubnel, and R.P. Young, Coupled Evolutions of Fracture Toughness and Elastic Wave Velocities at High Crack Density in Thermally Treated Westerly Granite, Int. J. Rock Mech. Min. Sci., 2007, 44(4), p 601–616CrossRefGoogle Scholar
  22. 22.
    C. Parr, L. Bin, B. Valdelièvre, C. Wöhrmeyer, and B. Touzo, The Advantages of Calcium Aluminate Cement Containing Castables for Steel Ladle Applications, Proc. ALAFAR, 2004, 2004, p 10–15Google Scholar
  23. 23.
    X.-T. Feng, S. Chen, and H. Zhou, Real-Time Computerized Tomography (CT) Experiments on Sandstone Damage Evolution During Triaxial Compression with Chemical Corrosion, Int. J. Rock Mech. Min. Sci., 2004, 41(2), p 181–192CrossRefGoogle Scholar
  24. 24.
    S. Huang and K. Xia, Effect of Heat-Treatment on the Dynamic Compressive Strength of Longyou Sandstone, Eng. Geol., 2015, 191, p 1–7CrossRefGoogle Scholar
  25. 25.
    J. Otani, T. Mukunoki, and Y. Obara, Application of x-ray CT Method for Characterization of Failure in Soils, Soils Found., 2000, 40(2), p 111–118CrossRefGoogle Scholar
  26. 26.
    S. Huang, K. Xia, and H. Zheng, Observation of Microscopic Damage Accumulation in Brittle Solids Subjected to Dynamic Compressive Loading, Rev. Sci. Instrum., 2013, 84(9), p 93903CrossRefGoogle Scholar
  27. 27.
    S. Huang, K. Xia, F. Yan, and X. Feng, An Experimental Study of the Rate Dependence of Tensile Strength Softening of Longyou Sandstone, Rock Mech. Rock Eng., 2010, 43(6), p 677–683CrossRefGoogle Scholar
  28. 28.
    Y. Xu, Y.L. Wong, C.S. Poon, and M. Anson, Influence of PFA on Cracking of Concrete and Cement Paste After Exposure to High Temperatures, Cem. Concr. Res., 2003, 33(12), p 2009–2016CrossRefGoogle Scholar
  29. 29.
    M.S. Morsy, Y.A. Al-Salloum, H. Abbas, and S.H. Alsayed, Behavior of Blended Cement Mortars Containing Nano-metakaolin at Elevated Temperatures, Constr. Build. Mater., 2012, 35, p 900–905CrossRefGoogle Scholar
  30. 30.
    C. F. Revelo and H. A. Colorado, 3D Printing of Kaolinite Clay Ceramics Using the Direct Ink Writing (DIW) Technique, Ceram. Int., 2017.Google Scholar
  31. 31.
    M.C.A. Teles, G.R. Altoé, P. Amoy Netto, H. Colorado, F.M. Margem, and S.N. Monteiro, Fique Fiber Tensile Elastic Modulus Dependence with Diameter Using the Weibull Statistical Analysis, Mater. Res., 2015, 18, p 193–199CrossRefGoogle Scholar
  32. 32.
    J.F. Zapata, M. Gomez, and H.A. Colorado, Structure-Property Relation and Weibull Analysis of Calcium Aluminate Cement Pastes, Mater. Charact., 2017, 134, p 9–17CrossRefGoogle Scholar
  33. 33.
    H.G. Midgley, Quantitative Determination of Phases in High Alumina Cement Clinkers by x-Ray Diffraction, Cem. Concr. Res., 1976, 6(2), p 217–223CrossRefGoogle Scholar
  34. 34.
    M.F. Gazulla, M.P. Gomez, M. Orduna, and A. Barba, Physico-Chemical Characterisation of Silicon Carbide Refractories, J. Eur. Ceram. Soc., 2006, 26(15), p 3451–3458CrossRefGoogle Scholar
  35. 35.
    H.A. Colorado, H.T. Hahn, and C. Hiel, Pultruded Glass Fiber-and Pultruded Carbon Fiber-Reinforced Chemically Bonded Phosphate Ceramics, J. Compos. Mater., 2011, 45(23), p 2391–2399CrossRefGoogle Scholar
  36. 36.
    H.A. Colorado, C. Hiel, and J. Yang, Different Fibers Exposed to Temperatures Up to 1000 & #xB0;C, Mech. Prop. Perform. Eng. Ceram. Compos., 2014, VIII, p 123–135Google Scholar
  37. 37.
    S. Akpinar, I.A. Altun, and K. Onel, Effects of SiC Addition on the Structure and Properties of Reticulated Porous Mullite Ceramics, J. Eur. Ceram. Soc., 2010, 30(13), p 2727–2734CrossRefGoogle Scholar
  38. 38.
    L. Fernández-Carrasco and T. Vázquez, Aplicación de la espectroscopia infrarroja al estudio de cemento aluminoso, Mater. construcción, 1996, 46(241), p 39–51CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.CCComposites LabUniversidad de Antioquia (UdeA)MedellínColombia
  2. 2.GISI, Institucion Universitaria de Envigado (IUE)EnvigadoColombia
  3. 3.CIDEMAT, Universidad de Antioquia (UdeA)MedellínColombia
  4. 4.Facultad de IngenieriaUniversidad de AntioquiaMedellínColombia

Personalised recommendations