Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 11, pp 6816–6826 | Cite as

Constitutive Behavior and Hot Workability of a Hot Isostatic Pressed Ti-22Al-25Nb Alloy during Hot Compression

  • Hongming Zhang
  • Mingqian Yang
  • Yuan Xu
  • Cheng Sun
  • Gang ChenEmail author
  • Fei Han
Article
  • 50 Downloads

Abstract

A Ti-22Al-25Nb alloy was fabricated from prealloyed powders by hot isostatic pressing for 2 h at a temperature of 1050 °C and pressure of 100 MPa. The hot deformation behavior of the Ti-22Al-25Nb alloy was characterized by isothermal compression testing at deformation temperatures between 900 and 1060 °C and strain rates between 0.001 and 1 s−1. Based on the true stress–strain curves, a constitutive equation was constructed to describe the flow stress as a function of the strain rate and deformation temperature. Three-dimensional (3D) processing maps were developed based on dynamic material model theory using the stress flow data to identify the instability and optimization regions of the hot processing parameters. The results show that the flow stress decreases with increasing deformation temperature and decreasing strain rate, and the softening mechanisms are different under different deformation conditions. The apparent activation energies in the (α2 + β/B2 + O) and (α2 + B2) phase regions are calculated to be 865.177 and 590.661 kJ/mol, respectively, which suggests that the hot isostatic pressed (HIPed) Ti-22Al-25Nb alloy requires a high hot deformation activation energy. Combined with microstructural observations, the optimal processing domains are determined to be a temperature range of 1030-1060 °C and strain rate range of 0.01-0.1 s−1 in the α2 + B2 phase region. Moreover, the results indicate that adiabatic shear bands and severe inhomogeneous deformation cause flow instability at lower temperatures (900-1005 °C) and higher strain rates (> 0.1 s−1).

Keywords

constitutive behavior hot isostatic pressing microstructural evolution processing map Ti-22Al-25Nb alloy 

Notes

Acknowledgments

The authors express their appreciation for the financial support of National Natural Science Foundation of China under Grant Nos. 51875121 and 51905122, Plan of Key Research and Development in Shandong Province under Grant Nos. 2017GGX202006 and 2019GGX102046, Natural Science Foundation in Shandong Province under Grant No. ZR2019MEE039.

References

  1. 1.
    K. Muraleedharan, T.K. Nandy, D. Banerjee, and S. Lele, Phase Stability and Ordering Behaviour of the O Phase in Ti-Al-Nb Alloys, Intermetallics, 1995, 3(3), p 187–199Google Scholar
  2. 2.
    C.J. Boehlert, B.S. Majumdar, V. Seetharaman, and D.B. Miracle, Part I. The Microstructural Evolution in Ti-Al-Nb O + Bcc Orthorhombic Alloys, Metall. Mater. Trans. A, 1999, 30(9), p 2305–2323Google Scholar
  3. 3.
    D. Banerjee, A.K. Gogia, T.K. Nandy, and V.A. Joshi, A New Ordered Orthorhombic Phase in a Ti3Al-Nb Alloy, Acta Metall., 1988, 36(4), p 871–882Google Scholar
  4. 4.
    F.C. Dary and T.M. Pollock, Effects of High Temperature Air and Vacuum Exposures on the Room Temperature Tensile Behavior of the (O + B2) Titanium Aluminide Ti-22Al-23Nb, Mater. Sci. Eng. A, 1996, 208(2), p 188–202Google Scholar
  5. 5.
    M. Hagiwara, S. Emura, A. Araoka, B.O. Kong, and F. Tang, Enhanced Mechanical Properties of Orthorhombic Ti2AlNb-Based Intermetallic Alloy, Met. Mater. Int., 2003, 9(3), p 265–272Google Scholar
  6. 6.
    C.J. Cowen and C.J. Boehlert, Microstructure, Creep, and Tensile Behavior of a Ti-21Al-29Nb (at.%) Orthorhombic + B2 Alloy, Intermetallics, 2006, 14(4), p 412–422Google Scholar
  7. 7.
    J.H. Peng, Y. Mao, S.Q. Li, and X.F. Sun, Microstructure Controlling by Heat Treatment and Complex Processing for Ti2AlNb Based Alloys, Mater. Sci. Eng. A, 2001, 299(1–2), p 75–80Google Scholar
  8. 8.
    M. Hagiwara, S. Emura, A. Araoka, S.J. Yang, and S.W. Nam, The Effect of Lamellar Morphology on Tensile and High-Cycle Fatigue Behavior of Orthorhombic Ti-22Al-27Nb Alloy, Metall. Trans. A, 2004, 35(7), p 2161–2170Google Scholar
  9. 9.
    L. Germann, D. Banerjee, J.Y. Guedou, and J.L. Strudel, Effect of Composition on the Mechanical Properties of Newly Developed Ti2AlNb-Based Titanium Aluminide, Intermetallics, 2005, 13(9), p 920–924Google Scholar
  10. 10.
    C. Xue, W.D. Zeng, W. Wang, X.B. Liang, and J.W. Zhang, Coarsening Behavior of Lamellar Orthorhombic Phase and Its Effect on Tensile Properties for the Ti-22Al-25Nb Alloy, Mater. Sci. Eng. A, 2014, 611, p 320–325Google Scholar
  11. 11.
    S.V. Kamat, A.K. Gogia, and D. Banerjee, Effect of Alloying Elements and Heat Treatment on the Fracture Toughness of Ti-Al-Nb Alloys, Acta Mater., 1998, 46(1), p 239–251Google Scholar
  12. 12.
    P. Lin, Z.B. He, S.J. Yuan, and J. Shen, Tensile Deformation Behavior of Ti-22Al-25Nb Alloy at Elevated Temperatures, Mater. Sci. Eng. A, 2012, 556, p 617–624Google Scholar
  13. 13.
    C.J. Boehlert, The Effects of Forging and Rolling on Microstructure in O + BCC Ti-Al-Nb Alloys, Mater. Sci. Eng. A, 2000, 279(1–2), p 118–129Google Scholar
  14. 14.
    P.R. Smith, A.H. Rosenberger, M.J. Shepard, and R. Wheeler, IV, Review A P/M Approach for the Fabrication of an Orthorhombic Titanium Aluminide for MMC Applications, J. Mater. Sci., 2000, 35(13), p 3169–3179Google Scholar
  15. 15.
    J.B. Jia, K.F. Zhang, and S.S. Jiang, Microstructure and Mechanical Properties of Ti-22Al-25Nb Alloy Fabricated by Vacuum Hot Pressing Sintering, Mater. Sci. Eng. A, 2014, 616, p 93–98Google Scholar
  16. 16.
    Y.X. Wang, K.F. Zhang, and B.Y. Li, Microstructure and High Temperature Tensile Properties of Ti-22Al-25Nb Alloy Prepared by Reactive Sintering with Element Powders, Mater. Sci. Eng. A, 2014, 608, p 229–233Google Scholar
  17. 17.
    K.H. Sim, G.F. Wang, J.M. Ju, J.L. Yang, and X. Li, Microstructure and Mechanical Properties of a Ti-22Al-25Nb Alloy Fabricated from Elemental Powders by Mechanical Alloying and Spark Plasma Sintering, J. Alloys Compd., 2017, 704, p 425–433Google Scholar
  18. 18.
    J. Wu, L. Xu, Z.G. Lu, B. Lu, Y.Y. Cui, and R. Yang, Microstructure Design and Heat Response of Powder Metallurgy Ti2AlNb Alloys, J. Mater. Sci. Technol., 2015, 31(12), p 1251–1257Google Scholar
  19. 19.
    C. Chao, S. Bo, P. Xue, Q. Wei, J.M. Wu, L. Wei, and Y. Shi, Effect of Hot Isostatic Pressing Procedure on Performance of Ti6Al4V: Surface Qualities, Microstructure and Mechanical Properties, J. Alloys Compd., 2016, 686, p 55–63Google Scholar
  20. 20.
    X. Ma, W.D. Zeng, B. Xu, Y. Sun, C. Xue, and Y.F. Han, Characterization of the hot Deformation Behavior of a Ti-22Al-25Nb Alloy Using Processing Maps Based on the Murty Criterion, Intermetallics, 2012, 20(1), p 1–7Google Scholar
  21. 21.
    Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43(6), p 243–258Google Scholar
  22. 22.
    J.L. Zhang, H.Z. Guo, and H.Q. Liang, Hot Deformation Behavior and Process Parameter Optimization of Ti-22Al-25Nb Using Processing Map, Rare Met., 2016, 35(1), p 118–126Google Scholar
  23. 23.
    J.B. Jia, K.F. Zhang, L.M. Liu, and F.Y. Wu, Hot Deformation Behavior and Processing Map of a Powder Metallurgy Ti-22Al-25Nb Alloy, J. Alloys Compd., 2014, 600, p 215–221Google Scholar
  24. 24.
    S. Wang, W. Xu, Y. Zong, X. Zhong, and D. Shan, Effect of Initial Microstructures on Hot Deformation Behavior and Workability of Ti2AlNb-Based Alloy, Metals, 2018, 8(6), p 382Google Scholar
  25. 25.
    A. Mohamadizadeh, A. Zarei-Hanzaki, H. Abedi, S. Mehtonen, and D. Porter, Hot Deformation Characterization of Duplex Low-Density Steel Through 3D Processing Map Development, Mater. Charact., 2015, 107, p 293–301Google Scholar
  26. 26.
    J. Liu, Z. Cui, and C. Li, Analysis of Metal Workability by Integration of FEM and 3-D Processing Maps, J. Mater. Proc. Technol., 2008, 205(1–3), p 497–505Google Scholar
  27. 27.
    G.Z. Quan, L. Zhang, X. Wang, and Y.L. Li, Correspondence Between Microstructural Evolution Mechanisms and Hot Processing Parameters for Ti-13Nb-13Zr Biomedical Alloy in Comprehensive Processing Maps, J. Alloys Compd., 2017, 698, p 178–193Google Scholar
  28. 28.
    A.K. Gogia, T.K. Nandy, D. Banerjee, T. Carisey, J.L. Strudel, and J.M. Franchet, Microstructure and Mechanical Properties of Orthorhombic Alloys in the Ti-Al-Nb System, Intermetallics, 1998, 6(7–8), p 741–748Google Scholar
  29. 29.
    J. Zhang, J. Wu, Y. Luo, X. Mao, D. Guo, S. Zhao, and F. Yang, Hot Deformation Mechanisms of Ti-22Al-25Nb Orthorhombic Alloy, J. Mater. Eng. Perform., 2019, 28(2), p 973–980Google Scholar
  30. 30.
    W. Wang, W. Zeng, C. Xue, X. Liang, and J. Zhang, Microstructural Evolution, Creep, Tensile Behavior of a Ti–22Al–25Nb (at.%) Orthorhombic Alloy, Mater. Sci. Eng. A, 2014, 603, p 176–184Google Scholar
  31. 31.
    G. Chen, X.S. Chang, J.X. Zhang, J. Yu, C. Sun, Q. Chen, and Z.D. Zhao, Microstructures and Mechanical Properties of In-Situ Al3Ti/2024 Aluminum Matrix Composites Fabricated by Ultrasonic Treatment and Subsequent Squeeze Casting, Met. Mater. Int. 2019.  https://doi.org/10.1007/s12540-019-00396-y
  32. 32.
    Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C.Y. Zhao, X. Ma, and Z.L. Long, EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-Based Superalloy During Hot Compressive Deformation, Mater. Des., 2016, 97, p 13–24Google Scholar
  33. 33.
    J. Jia, K. Zhang, and Z. Lu, Dynamic Recrystallization Kinetics of a Powder Metallurgy Ti-22Al-25Nb Alloy During Hot Compression, Mater. Sci. Eng. A, 2014, 607, p 630–639Google Scholar
  34. 34.
    Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759Google Scholar
  35. 35.
    J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, and J.S. Li, Characterization of Hot Deformation Behavior of a New Near Beta Titanium Alloy: Ti-7333, Mater. Des., 2013, 49, p 945–952Google Scholar
  36. 36.
    A.B. Li, L.J. Huang, Q.Y. Meng, L. Geng, and X.P. Cui, Hot Working of Ti-6Al-3Mo-2Zr-0.3Si Alloy with Lamellar α + β Starting Structure Using Processing Map, Mater. Des., 2009, 30(5), p 1625–1631Google Scholar
  37. 37.
    I. Philippart and H.J. Rack, High Temperature Dynamic Yielding in Metastable Ti-6.8Mo-4.5F-1.5Al, Mater. Sci. Eng. A, 1998, 243(1–2), p 196–200Google Scholar
  38. 38.
    W.D. Zeng, Y. Shu, X.M. Zhang, Y.G. Zhou, Y.Q. Zhao, H. Wu, Y. Dai, J. Yang, and L. Zhou, Hot Workability and Microstructure Evolution of Highly β Stabilised Ti-25V-15Cr-0.3Si alloy, Mater. Sci. Technol., 2008, 24(10), p 1222–1229Google Scholar
  39. 39.
    C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Mater., 1966, 14(9), p 1136–1138Google Scholar
  40. 40.
    C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32Google Scholar
  41. 41.
    G.Z. Quan, L. Zhao, T. Chen, Y. Wang, Y.P. Mao, W.Q. Lv, and J. Zhou, Identification for the Optimal Working Parameters of As-Extruded 42CrMo High-Strength Steel from a Large Range of Strain, Strain Rate and Temperature, Mater. Sci. Eng. A, 2012, 538, p 364–373Google Scholar
  42. 42.
    Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1–2), p 82–88Google Scholar
  43. 43.
    C.M. Sellars and W.J. Tegart, Relationship Between Strength and Structure in Deformation at Elevated Temperatures, Mem. Sci. Rev. Met., 1966, 63(9), p 731–745Google Scholar
  44. 44.
    T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4V with Lamellar Starting Structure, Mater. Sci. Eng. A, 2002, 325(1–2), p 112–125Google Scholar
  45. 45.
    Y.C. Lin, L.T. Li, Y.C. Xia, and Y.Q. Jiang, Hot Deformation and Processing Map of a Typical Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2013, 550, p 438–445Google Scholar
  46. 46.
    C. Zhang and K. Zhang, Superplasticity of a γ-TiAl Alloy and Its Microstructure and Cavity Evolution in Deformation, J. Alloys Compd., 2010, 492, p 236–240Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Hongming Zhang
    • 1
  • Mingqian Yang
    • 1
  • Yuan Xu
    • 2
  • Cheng Sun
    • 3
  • Gang Chen
    • 2
    Email author
  • Fei Han
    • 2
  1. 1.Department of Civil EngineeringHarbin Institute of TechnologyWeihaiChina
  2. 2.School of Materials Science and EngineeringHarbin Institute of TechnologyWeihaiChina
  3. 3.John Deere (Tianjin) WorksTianjinChina

Personalised recommendations