Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 11, pp 7171–7180 | Cite as

Effects of Heat Treatment Parameters on the Microstructure and Properties of Bainitic Steel

  • Bogusława Adamczyk-CieślakEmail author
  • Milena Koralnik
  • Roman Kuziak
  • Michał Smaczny
  • Tomasz Zygmunt
  • Jarosław Mizera
Article
  • 85 Downloads

Abstract

The results obtained in the present study demonstrate the effects of various types of heat treatment processes on the microstructure and hardness of new trip-assisted carbide-free bainitic steel. The steel was subjected to three variants of heat treatment processing with an isothermal bainitic transformation temperature in a range from 350 to 480 °C. Changes of temperature and time of isothermal holding caused changes in the values of retained austenite (RA) volume fraction and carbon content. Reduction in the isothermal holding temperature resulted in the increased concentration of carbon in austenite. Also, the investigations of the microstructure showed that size and morphology of the austenite evolved during heat treatment. The SEM observations revealed that the steel subjected to heat treatment is composed of the carbide-free bainite with ferrite plates and a high volume fraction of retained austenite in the form of thin layers or islands. With the lower isothermal holding temperature and the higher degree of bainitic transformation, the more the RA morphology changed from island to layer type. The application of the lowest isothermal temperature resulted in a significant refinement of the microstructure components: the bainitic ferrite plates and the RA layers. Also, the mechanical properties obtained from the tensile testing and hardness measurements were correlated to the microstructure of the investigated steel after different isothermal holdings.

Keywords

bainitic steel martensite mechanical properties retained austenite 

Notes

Acknowledgments

This work was supported by the National Centre for Research and Development—Project No.: PBS3/B5/39/2015 “Hybrid production technology of rails characterized by increased durability in the service conditions including future trends in the development of rail transport.”

References

  1. 1.
    F.G. Caballero, H.K. Badeshia, K.J. Mawella, D.G. Jones, and P. Brown, Design of Novel High Strength Bainitic Steels: Part 1, Mater. Sci. Technol. Lond., 2013,  https://doi.org/10.1179/026708301101510348 CrossRefGoogle Scholar
  2. 2.
    H.K. Bhadeshia and D.V. Edmonds, The Mechanism of Bainite Formation in Steels, Acta Metall., 1980, 28, p 1265–1273.  https://doi.org/10.1016/0001-6160(80)90082-6 CrossRefGoogle Scholar
  3. 3.
    H.-S. Yang and H.K.D.H. Bhadeshia, Designing Low Carbon, Low Temperature Bainite, Mater. Sci. Technol., 2013, 24(3), p 335–342.  https://doi.org/10.1179/174328408X275982 CrossRefGoogle Scholar
  4. 4.
    S. Mohamed, Phase Transformation and Mechanical Properties New Austenite-Stabilised Bainite Steels. Institut für Metallurgie Technische Universitat Claustahl, Ph.D. Thesis. https://core.ac.uk/. Accessed 24 Sept 2018 (2007)
  5. 5.
    Z. Chen, J. Gu, and L. Han, Bainite Transformation Characteristics of High-Si Hypereutectoid Bearing Steel, Metallogr. Microstruct. Anal., 2018, 7(1), p 3–11.  https://doi.org/10.1007/s13632-017-0410-5 CrossRefGoogle Scholar
  6. 6.
    L. Lan and X. Kong, Transformation Stasis Phenomenon of Bainite Formation in Low-Carbon Multicomponent Alloyed Steel, Miner. Met. Mater. Soc., 2017, 70(5), p 666–671.  https://doi.org/10.1007/s11837-017-2633-y CrossRefGoogle Scholar
  7. 7.
    J. Yin, M. Hillert, and A. Borgenstam, Morphology of Upper and Lower Bainite with 0.7 Mass pct C, Metall. Mater. Trans. A, 2017, 48A, p 4006–4025.  https://doi.org/10.1007/s11661-017-4208-5 CrossRefGoogle Scholar
  8. 8.
    H.I. Aaronson, W.T. Reynolds, Jr., and G.R. Pury, The Incomplete Transformation Phenomenon in Steel, Metall. Mater. Trans. A, 2006, 21A, p 134–1380.  https://doi.org/10.1007/s11661-006-0116-9 CrossRefGoogle Scholar
  9. 9.
    R. Kuziak and M. Pietrzyk, Możliwości zastosowania nowoczesnych stali bainitycznych do prdukcji elementów złącznych z pominięciem zabiegów obróbki cieplnej (Fasteners Made of New Generation of Bainitic Steels Without Heat Treating Operations), Trans. Inst. Ferr. Metall., 2011, 63(2), p 1–6 (in Polish)Google Scholar
  10. 10.
    A.Z. Hanzaki, P.D. Hodgson, and S. Yue, The Influence of Bainite on Retained Austenite Characteristics in Si–Mn TRIP Steels, ISIJ Int., 1995, 35(1), p 79–85.  https://doi.org/10.2355/isijinternational.35.79 CrossRefGoogle Scholar
  11. 11.
    H.K. Bhadeshia, Bainite in Steels Theory and Practise, Maney Publishing IOM Communications Ltd, University of Cambridge, Cambridge, 2001Google Scholar
  12. 12.
    J.M. Rigsbee, and P.J. Vander Arend. Laboratory Studies of Microstructure and Structure-Property Relationships in Dual-Phase HSLA Steels, in Formable HSLA Steels. TMS-AIME. Metall. Soc. AIME Lect. Theory Phase Transform, p 56–86Google Scholar
  13. 13.
    M.L. Brandt, and G.B. Olson, Bainitic Stabilization of Austenite in Low Alloy Steels. Iron Steelmaker. University of North Texas Libraries, vol 5, p 257–267. https://digital.library.unt.edu/ark:/67531/metadc1190550/. Accessed 30 Sept. 2018 (1993)
  14. 14.
    A.S. Podder, I. Lonardelli, A. Molinari, and H.K. Bhadeshia, Thermal Stability of Retained Austenite in Bainitic Steel: An In Situ Study, Proc. R. Soc. A, 2011, 467, p 3141–3156.  https://doi.org/10.1098/rspa.2011.0212 CrossRefGoogle Scholar
  15. 15.
    I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Effect of Alloying Elements on the Microstructure-Property Relationship in Thermomechanically Processed C-Mn-Si TRIP Steels, Steel Res. Int., 2002, 73(6–7), p 274–279.  https://doi.org/10.1002/srin.200200208 CrossRefGoogle Scholar
  16. 16.
    A. Basuki and E. Aernoudt, Effect of Deformation in the Intercritical Area on the Grain Refinement of Retained Austenite of 0.4C TRIP Steel, Scr. Mater., 1999, 40, p 1003–1008CrossRefGoogle Scholar
  17. 17.
    B. Adamczyk-Cieslak, M. Koralnik, R. Kuziak, T. Brynk, T. Zygmunt, and J. Mizera, Low-Cycle Fatigue Behavior and Microstructural Evolution of Pearlitic and Bainitic Steels, Mater. Sci. Eng. A, 2019, 747, p 144–153.  https://doi.org/10.1016/j.msea.2019.01.043 CrossRefGoogle Scholar
  18. 18.
    J. Meng, Y. Feng, Q. Zhou, L. Zhao, F. Zhang, and L. Qian, Effects of Austempering Temperature on Strength, Ductility and Toughness of Cow-C High-Al/Si Carbide-Free Bainitic Steel, J. Mater. Eng. Perform., 2015, 24, p 3068–3076.  https://doi.org/10.1007/s11665-015-1567-1 CrossRefGoogle Scholar
  19. 19.
    M. Zhu, G. Xu, M. Zhou, Q. Yuan, J. Tian, and H. Hu, Effects of Tempering on the Microstructure and Properties of a High-Strength Bainite Rail Steel with Good Toughness, Metals, 2018, 8(484), p 1–11.  https://doi.org/10.3390/met8070484 CrossRefGoogle Scholar
  20. 20.
    X.Y. Long, J. Kang, B. Lv, and F.C. Zhang, Carbide-Free Bainite in Medium Carbon Steel, Mater. Des., 2014, 64, p 237–245.  https://doi.org/10.1016/j.matdes.2014.07.055 CrossRefGoogle Scholar
  21. 21.
    H. Huang, M.Y. Sherif, and P.E.J. Rivera-Díaz-del-Castillo, Combinatorial Optimization of Carbide-Free Bainitic Nanostructures, Acta Mater., 2013, 61, p 1639–1647.  https://doi.org/10.1016/j.actamat.2012.11.040 CrossRefGoogle Scholar
  22. 22.
    B. Yin, Y. Han, W. Wang, H. Li, Y. Liu, and X. Ran, Flow Characteristics of a Medium–High Carbon Mn-Si-Cr Alloyed Steel at High Temperatures, J. Mater. Eng. Perform., 2019, 28, p 5104–5115.  https://doi.org/10.1007/s11665-019-04197-7 CrossRefGoogle Scholar
  23. 23.
    C.F. Jatczak, Retained Austenite and Its Measurement by X-ray Diffraction, SAE Trans., 1980, 89(2), p 1657–1676Google Scholar
  24. 24.
    B.D. Cullity, Elements of X-ray Diffraction, Addision-Wesley Publishing Company, Boston, 1978Google Scholar
  25. 25.
    Y. Han, W. Xiu, C. Liu, and H. Wu, Isothermal Transformation of a Commercial Super-Bainitic Steel: Part I, Microstructural Characterization and Hardness, J. Mater. Eng. Perform., 2017, 26(2), p 472–477.  https://doi.org/10.1007/s11665-016-2473-x CrossRefGoogle Scholar
  26. 26.
    J. Zhang, C.S. Li, B.Z. Li, Z.X. Li, and Q.W. Wang, Effect of Final Cooling Temperature on Microstructure and Mechanical Properties of a Cr-Ni-Mo-V Bainite Steel, J. Mater. Eng. Perform., 2018, 27(9), p 4749–4759.  https://doi.org/10.1007/s11665-018-3288-8 CrossRefGoogle Scholar
  27. 27.
    S.S. Babu, The Mechanism of Acicular Ferrite in Weld Deposits, Curr. Opin. Solid State Mater. Sci., 2004, 8(3–4), p 267–278.  https://doi.org/10.1016/j.cossms.2004.10.001 CrossRefGoogle Scholar
  28. 28.
    G. Gao, C. Feng, and B. Bai, Effects of Nb on the Microstructure and Mechanical Properties of Water-Quenched FGBA/BG Steels, J. Mater. Eng. Perform., 2011, 21(3), p 345–352.  https://doi.org/10.1007/s11665-011-9903-6 CrossRefGoogle Scholar
  29. 29.
    C. Capdevila, F.G. Caballero, and C.G. de Andres, Austenite Grain Size Effects on Isothermal Allotriomorphic Ferrite Formation in 0.37C-1.45Mn-0.11V Microalloyed Steel, Mater. Trans., 2003, 44(6), p 1087–1095.  https://doi.org/10.2320/matertrans.44.1087 CrossRefGoogle Scholar
  30. 30.
    J.P. Wang, Z.G. Yang, B.Z. Bai, and H.S. Fang, Grain Refinement and Microstructural Evolution of Grain Boundary Allotriomorphic Ferrite/Granular Bainite Steel After Prior Austenite Deformation, Mater. Sci. Eng. A, 2004, 369(1–2), p 112–118.  https://doi.org/10.1016/j.msea.2003.10.304 CrossRefGoogle Scholar
  31. 31.
    J. Meng, Y. Feng, Q. Zhou, L. Zhao, F. Zhang, and L. Qian, Effects of Austempering Temperature on Strength Ductility and Toughness of Low-C High-Al/Si Carbide-Free Bainitic Steel, J. Mater. Eng. Perform., 2018, 24(8), p 3068–3076.  https://doi.org/10.1007/s11665-015-1567-1 CrossRefGoogle Scholar
  32. 32.
    M.N. Yoozbashi, S. Yazdani, and T.S. Wang, Design of a New Nanostructured, High-Si Bainitic Steel with Lower Cost Production, Mater. Des., 2011, 32(6), p 3248–3253.  https://doi.org/10.1016/j.matdes.2011.02.031 CrossRefGoogle Scholar
  33. 33.
    A. Lambert-Perlade, A.F. Gourgues, and A. Pineau, Austenite to Bainite Phase Transformation in the Heat-Affected Zone of a High Strength Low Alloy Steel, Acta Mater., 2004, 52(8), p 2337–2348.  https://doi.org/10.1016/j.actamat.2004.01.025 CrossRefGoogle Scholar
  34. 34.
    L. Qian, Q. Zhou, F. Zhang, J. Meng, M. Zhang, and Y. Tian, Microstructure and Mechanical Properties of a Low Carbon Carbide-Free Bainitic Steel co-Alloyed with Al and Si, Mater. Des., 2012, 39, p 264–268.  https://doi.org/10.1016/j.matdes.2012.02.053 CrossRefGoogle Scholar
  35. 35.
    A.A. Kichkina, MYu Matrosov, L.I. Éfron, D.A. Ringinen, I.V. Lyasotskii, E.V. Shul’ga, and A.A. Efimov, M/A-Constituent in Bainitic Low Carbon High Strength Steel Structure. Part 1, Metallurgist, 2018, 62, p 772–782.  https://doi.org/10.1007/s11015-018-0719-6 CrossRefGoogle Scholar
  36. 36.
    C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Acceleration of Low-Temperature Bainite, ISIJ Int., 2003, 43, p 1821–1825.  https://doi.org/10.2355/isijinternational.43.1821 CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Bogusława Adamczyk-Cieślak
    • 1
    Email author
  • Milena Koralnik
    • 1
  • Roman Kuziak
    • 2
  • Michał Smaczny
    • 1
  • Tomasz Zygmunt
    • 3
  • Jarosław Mizera
    • 1
  1. 1.Faculty of Materials Science and EngineeringWarsaw University of TechnologyWarsawPoland
  2. 2.Stanisław Staszic Institute for Ferrous MetallurgyGliwicePoland
  3. 3.ArcelorMittal Poland S.A.Dabrowa GorniczaPoland

Personalised recommendations