Journal of Materials Engineering and Performance

, Volume 28, Issue 11, pp 7109–7118 | Cite as

Application of X-ray Technique to Study the Structure of Ultrafine-Grained Ferritic/Martensitic Steel

  • V. D. Sitdikov
  • R. K. Islamgaliev
  • M. A. NikitinaEmail author
  • G. F. Sitdikova


In this work, x-ray diffraction and transmission electron microscopy (TEM) analyses have been applied to study the structure of ultrafine-grained (UFG) ferritic/martensitic steel as compared to coarse-grained samples subjected to standard treatment. The x-ray phase analysis of diffraction patterns taken in the “transmission” mode allowed determining the volume fraction and phase composition of particles in the UFG samples. The lattice parameter, the size of coherent scattering domains, the averaged dislocation density, and the fraction of edge and screw dislocations of the ferritic phase in steel were determined according to the diffraction patterns taken in the “reflection” mode. The small-angle x-ray scattering (SAXS) technique was used to study the quantitative characteristics of the size, shape, and distribution of precipitates in the UFG samples. The TEM investigations were performed on the same foils to confirm the results of SAXS. The quantitative evaluations of dispersion and dislocation hardenings in ferritic/martensitic steel were conducted on the basis of the results obtained.


ferritic/martensitic steel transmission electron microscopy ultrafine-grained structure x-ray diffraction 



The authors are grateful to the Russian Science Foundation within the framework of the Project No. 19-19-00496. M.A. Nikitina is grateful to be supported by RFBR for processing UFG samples of ferritic/martensitic steel and performing TEM studies according to the Project No. 18-38-00649.


  1. 1.
    Q. Li, Modeling the Microstructure-Mechanical Property Relationship for a 12Cr-2W-V-Mo-Ni Power Plant Steel, Mater. Sci. Eng. A, 2003, 361, p 385–391Google Scholar
  2. 2.
    G. Yang, C.X. Huang, C. Wang, L.Y. Zhang, C. Hu, Z.F. Zhang, and S.D. Wu, Enhancement of Mechanical Properties of Heat-Resistant Martensitic Steel Processed by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2009, 515, p 199–206Google Scholar
  3. 3.
    M. Song, C. Sun, Z. Fan, Y. Chen, R. Zhu, K.Y. Yu, K.T. Hartwig, H. Wang, and X. Zhang, A Roadmap for Tailoring the Strength and Ductility of Ferritic/Martensitic T91 Steel via Thermo-Mechanical Treatment, Acta Mater., 2016, 112, p 361–377Google Scholar
  4. 4.
    T. Chao, Z.Q. Fan, S.X. Zhao, G.N. Luo, C.S. Liu, and Q.F. Fang, Strengthening Mechanism and Thermal Stability of Severely Deformed Ferritic/Martensitic Steel, Mater. Sci. Eng. A, 2014, 596, p 244–249Google Scholar
  5. 5.
    R.K. Islamgaliev, M.A. Nikitina, A.V. Ganeev, and V.D. Sitdikov, Strengthening Mechanisms in Ultrafine-Grained Ferritic/Martensitic Steel Produced by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2019, 744, p 163–170Google Scholar
  6. 6.
    Z.Q. Fan, T. Chao, S.X. Zhao, G.N. Luo, C.S. Liu, and Q.F. Fang, The Microstructure and Mechanical Properties of T91 Steel Processed by ECAP at Room Temperature, J. Nucl. Mater., 2013, 434, p 417–421Google Scholar
  7. 7.
    V.D. Sitdikov, MYu Murashkin, and R.Z. Valiev, New X-ray Technique to Characterize Nanoscale Precipitates in Aged Aluminum Alloys, J. Mater. Eng. Perform., 2017, 26, p 4732–4737Google Scholar
  8. 8.
    V.D. Sitdikov, R.K. Islamgaliev, M.A. Nikitina, G.F. Sitdikova, K.X. Wei, I.V. Alexandrov, and W. Wei, Analysis of Precipitates in UFG Metallic Materials, Phil. Mag., 2019, 99, p 73–79Google Scholar
  9. 9.
    V.D. Sitdikov, M. Yu Murashkin, and R.Z. Valiev, Full-Scale Use of X-ray Scattering Techniques to Characterize Aged Al-2wt.% Cu Alloy, J. Alloys Compd., 2018, 735, p 1792–1798Google Scholar
  10. 10.
    M. Leoni, T. Confente, and P. Scardi, PM2K: A Flexible Program Implementing Whole Powder Pattern Modelling, Z. Kristallogr. Suppl., 2006, 23, p 249–254Google Scholar
  11. 11.
    P. Scardi, M. Ortolani, and M. Leoni, WPPM: Microstructural Analysis Beyond the Rietveld Method, Mater. Sci. Forum, 2010, 651, p 155–171Google Scholar
  12. 12.
    A.V. Ganeev, M.A. Nikitina, V.D. Sitdikov, R.K. Islamgaliev, A. Hoffman, and H. Wen, Effects of The Tempering and High-Pressure Torsion Temperatures on Microstructure of Ferritic/Martensitic Steel Grade 91, Materials, 2018, 11(43), p 627–636Google Scholar
  13. 13.
    I.J. Beyerlein and L.S. Tóth, Texture Evolution in Equal-Channel Angular Extrusion, Prog. Mater Sci., 2009, 54, p 427–510Google Scholar
  14. 14.
    Integrated X-Ray Powder Diffraction Software PDXL, Rigaku J., 2010, 26(1), p 23–27Google Scholar
  15. 15.
    H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Cryst., 1969, 2, p 65–71Google Scholar
  16. 16.
    E.J. Sonneveld and J.W. Visser, Automatic Collection of Powder Data from Photographs, J. Appl. Cryst., 1975, 8, p 1–7Google Scholar
  17. 17.
  18. 18.
    H.E. Swanson and E. Tatge, Standard X-ray Diffraction Powder Patterns, Natl. Bur. Stand. (U.S.) Circ., 1953, 539(1), p 23–33Google Scholar
  19. 19.
    U.F. Kocks, C.N. Tome, and H.R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, Cambridge University Press, Cambridge, 1998, p 676Google Scholar
  20. 20.
    R.W. Fonda and K.E. Knipling, Texture Development in Friction Stir Welds, Sci. Technol. Weld. Join., 2011, 16(4), p 288–294Google Scholar
  21. 21.
    A. Westgren, Crystal Structure and Composition of Cubic Chromium Carbide, Jernkontorets Ann., 1933, 17, p 501Google Scholar
  22. 22.
    A. Metcalfe, The Mutual Solubility of Tungsten Carbide and Titanium Carbide, J. Inst. Met., 1947, 73, p 591Google Scholar
  23. 23.
    J. Leciejewicz, A Note on the Structure of Tungsten Carbide, Acta Crystallogr., 1961, 14, p 200Google Scholar
  24. 24.
    J. Visser, Technisch Physische Dienst., Delft, Netherlands, JCPDS Grant-in-Aid Rep., 1975 PDF 27-380Google Scholar
  25. 25.
    Q. Yang and S. Andersson, A New Description of Pentagonal Frank–Kasper Phases and a Possible Structure Model of the Icosahedral Quasicrystal, Acta Crystallogr. Sect. B Struct. Sci., 1987, 43, p 1Google Scholar
  26. 26.
    S. Nagakura, Study of Metallic Carbides by Electron Diffraction Part II. Crystal Structure Analysis of Nickel Carbide, J. Phys. Soc. Jpn., 1958, 13, p 1005–1014Google Scholar
  27. 27.
    E.V. Eeckhout, T. Depover, and K. Verbeken, The Effect of Microstructural Characteristics on the Hydrogen Permeation Transient in Quenched and Tempered Martensitic Alloys, Metals, 2018, 8, p 779Google Scholar
  28. 28.
    J. Zhang and S. Hou, Effects of CTCP Modification on Microstructure and Wear Behavior of CTCP-NiCrBSi/Heat Resistant Steel Composite Layer, Materials, 2018, 11, p 2202Google Scholar
  29. 29.
    A. Malfliet, W.V. Broek, F. Chassagne, J.-D. Mithieux, B. Blanpain, and P. Wollants, Fe3Nb3N Precipitates of the Fe3W3C Type in Nb Stabilized Ferritic Stainless Steel, J. Alloys Compd., 2011, 509(40), p 9583–9588Google Scholar
  30. 30.
    N. Arivazhagan, S. Singh, S. Prakash, and G.M. Reddy, Investigation on AISI, 304 Austenitic Stainless Steel to AISI, 4140 Low Alloy Steel Dissimilar Joints by Gas Tungsten Arc, Electron Beam and Friction Welding, Mater. Des., 2011, 32, p 3036–3050Google Scholar
  31. 31.
    N. Srisuwan, K. Eidhed, N. Kreatsereekul, T. Yingsamphanchareon, and A. Kaewvilai, The Study of Heat Treatment Effects on Chromium Carbide Precipitation of 35Cr-45Ni-Nb Alloy for Repairing Furnace Tubes, Metals, 2016, 6, p 26Google Scholar
  32. 32.
    G. Beaucage, Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering, J. Appl. Crystallogr., 1995, 28(6), p 717–728Google Scholar
  33. 33.
    M.D. Baró, Y.R. Kolobov, I.A. Ovid’ko, H.-E. Schaefer, B.B. Straumal, R.Z. Valiev, I.V. Alexandrov, M. Ivanov, K. Reimann, A.B. Reizis, S. Suriñash, and A.P. Zhilyaev, Diffusion and Related Phenomena in Bulk Nanostructured Materials, Rev. Adv. Mater. Sci., 2001, 2, p 1–43Google Scholar
  34. 34.
    S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, and P.J. Uggowitzer, Mechanisms Controlling the Artificial Aging of Al-Mg-Si Alloys, Acta Mater., 2011, 59, p 3352–3363Google Scholar
  35. 35.
    D. Setman, E. Schafler, E. Korznikova, and M.J. Zehetbauer, Microstructural Stability of Cu Processed by Different Routes of Severe Plastic Deformation, Mater. Sci. Eng. A, 2008, 493, p 116–122Google Scholar
  36. 36.
    M.J. Zehetbauer, H.P. Stüwe, A. Vorhauer, E. Schafler, and J. Kohout, The Role of Hydrostatic Pressure in Severe Plastic Deformation, Adv. Eng. Mater., 2003, 5, p 330–337Google Scholar
  37. 37.
    X. Sauvage, N.A. Enikeev, R.Z. Valiev, Y. Nasedkina, and MYu Murashkin, Optimization of Electrical Conductivity and Strength Combination by Structure Design at the Nanoscale in Al-Mg-Si Alloys, Acta Mater., 2014, 72, p 125–136Google Scholar
  38. 38.
    F. Vovopivec, Deformacijsko starenje konstrukcijskih čelika, Metallurgija, 2004, 43(3), p 143–148 ((in Czech))Google Scholar
  39. 39.
    K. Ma, T. Hu, H. Yang, T. Topping, A. Yousefiani, E.J. Lavernia, and J.M. Schoenung, Coupling of Dislocations and Precipitates: Impact on the Mechanical Behavior of Ultrafine Grained Al-Zn-Mg Alloys, Acta Mater., 2016, 103, p 153–164Google Scholar
  40. 40.
    R.C. Picu and D. Zhang, Atomistic Study of Pipe Diffusion in Al-Mg Alloys, Acta Mater., 2004, 52, p 161–171Google Scholar
  41. 41.
    H. Mughrabi, Dislocation Wall and Cell Structures and Long-Range Internal Stresses in Deformed Metal Crystals, Acta Met., 1983, 31, p 1367–1379Google Scholar
  42. 42.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Progr. Mater. Sci., 2000, 45, p 103–189Google Scholar
  43. 43.
    D. Prokoshkina, V.A. Esin, G. Wilde, and S.V. Divinski, Grain Boundary Width, Energy and Self-diffusion in Nickel: Effect of Material Purity, Acta Mater., 2013, 61, p 5188–5197Google Scholar
  44. 44.
    S.V. Divinski and G. Wilde, Diffusion in Ultrafine Grained Materials, Mater. Sci. Forum, 2008, 584–586, p 1012–1017Google Scholar
  45. 45.
    Y.Q. Chen, S.P. Pan, S.W. Tang, W.H. Liu, C.P. Tang, and F.Y. Xu, Formation Mechanisms and Evolution of Precipitate-Free Zones at Grain Boundaries in an Al-Cu-Mg-Mn Alloy During Homogenisation, J. Mater. Sci., 2016, 51, p 7780–7792Google Scholar
  46. 46.
    C. Perrin and W.M. Rainforth, The Coarsening of θ Precipitates in an Al-4вec% Cu Alloy as a Result of Frictional Heating, Scr. Mater., 1996, 34, p 877–881Google Scholar
  47. 47.
    T. Gladman, Precipitation Hardening in Metals, Mater. Sci. Technol., 1999, 15, p 30–36Google Scholar
  48. 48.
    S. Takaki, Limit of Dislocation Density and Ulta-Grain-Refining on Severe Deformation in Iron, Int. J. ISSI, 2005, 2(1), p 21–25Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • V. D. Sitdikov
    • 1
    • 2
  • R. K. Islamgaliev
    • 1
  • M. A. Nikitina
    • 1
    Email author
  • G. F. Sitdikova
    • 1
  1. 1.Institute of Physics of Advanced MaterialsUfa State Aviation Technical UniversityUfaRussia
  2. 2.Laboratory for Mechanics of Bulk NanomaterialsSaint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations