Tensile Properties of a Cast Al-Si-Mg Alloy with Reduced Si Content and Cr Addition at High Temperature

  • Marialaura TocciEmail author
  • Riccardo Donnini
  • Giuliano Angella
  • Elisabetta Gariboldi
  • Annalisa Pola


Tensile properties of an Al-Si-Mg casting alloy with reduced Si content and Cr addition were investigated at room and high temperatures. It was found that the studied alloy exhibits a remarkable performance up to 200 °C, with comparable or slightly higher strength than typical values for Al-Si-Mg-Cu alloys, commonly used for high-temperature applications, and good elongation. This is due to the choice of proper heat treatment and to the formation of dispersoids containing Cr during heat treatment, which are stable at the considered temperatures, as demonstrated by scanning and transmission electron microscopy (STEM) analysis. Interestingly, exposure to 300 °C during tensile tests enhanced an additional formation of dispersoids. It is believed that heating the material in T6 condition led to such observed dispersoids formation since precursors were already present in the Al matrix. This is not sufficient to avoid material softening at 300 °C, but it represents an interesting point in order to develop alternative heat treatment routes for dispersion-strengthened Al alloys.


Al alloys dispersion strengthening heat treatment mechanical properties microstructure precipitation strengthening 



The authors would like to thank Maxion Wheels Italia Srl for providing the alloy, F. Peli (Dept. of Mechanical and Industrial Engineering of the University of Brescia) for his support in tensile samples preparation and Dr. L. Montesano (Dept. of Mechanical and Industrial Engineering of the University of Brescia) for SEM analysis.


  1. 1.
    Mahle GmbH, Ed., Pistons and Engine Testing, Springer Science & Business Media, Stuttgart, 2012, p 59–76CrossRefGoogle Scholar
  2. 2.
    J. Man, L. Jing, and S. Jie, The Effects of Cu Addition on the Microstructure and Thermal Stability of an Al-Mg-Si Alloy, J. Alloys Compd., 2007, 437, p 146–150CrossRefGoogle Scholar
  3. 3.
    M. Zamani, S. Seifeddine, and A. Jarfors, High Temperature Tensile Deformation Behavior and Failure Mechanisms of an Al-Si-Cu-Mg Cast Alloy—The Microstructural Scale Effect, Mater. Des., 2015, 86, p 361–370CrossRefGoogle Scholar
  4. 4.
    Y. Li, S. Brusethaug, and A. Olsen, Influence of Cu on the Mechanical Properties and Precipitation Behavior of AlSi7Mg0.5 Alloy During Aging Treatment, Scr. Mater., 2006, 54, p 99–103CrossRefGoogle Scholar
  5. 5.
    M. Javidani and D. Larouche, Application of Cast Al-Si Alloys in Internal Combustion Engine Components, Int. Mater. Rev., 2014, 59(3), p 132–158CrossRefGoogle Scholar
  6. 6.
    L. Ceschini, A. Morri, A. Morri, S. Toschi, S. Johansson, and S. Seifeddine, Effect of Microstructure and Overaging on the Tensile Behavior at Room and Elevated Temperature of C355-T6 Cast Aluminum Alloy, Mater. Des., 2015, 83, p 626–634CrossRefGoogle Scholar
  7. 7.
    E. Kilinc and Y. Birol, Optimising the T6 Heat Treatment for Gravity Cast AlSi7MgCu0.5 Alloy V8 Cylinder Heads, Int. J. Cast Met. Res., 2017, 30(4), p 244–250CrossRefGoogle Scholar
  8. 8.
    S. Roy, L. Allard, A. Rodriguez, T. Watkins, and A. Shyam, Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part I—Microstructure Evolution, Metall. Mater. Trans. A, 2017, 48(5), p 2529–2542CrossRefGoogle Scholar
  9. 9.
    J.R. Davis, Ed., ASM Speciality Handbook, Aluminum and Aluminum Alloys, ASM International, Davis & Associates, Materials Park, 1993Google Scholar
  10. 10.
    W. Kasprzak, B. Amirkhiz, and M. Niewczas, Structure and Properties of Cast Al-Si Based Alloy with Zr-V-Ti Additions and Its Evaluation of High Temperature Performance, J. Alloys Compd., 2014, 595, p 67–79CrossRefGoogle Scholar
  11. 11.
    S. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D. Chen, Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr, Metall. Mater. Trans. A, 2015, 46A, p 3063–3078CrossRefGoogle Scholar
  12. 12.
    S. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D. Chen, Ageing Characteristics and High-Temperature Tensile Properties of Al-Si-Cu-Mg Alloys with Micro-Additions of Cr, Ti, V and Zr, Mater. Sci. Eng. A, 2016, 652, p 353–364CrossRefGoogle Scholar
  13. 13.
    M. Zamani, L. Morini, L. Ceschini, and S. Seifeddine, The Role of Transition Metal Additions on the Ambient and Elevated Temperature Properties of Al-Si Alloys, Mater. Sci. Eng. A, 2017, 693, p 42–50CrossRefGoogle Scholar
  14. 14.
    M. Di Giovanni, E. Cerri, D. Casari, M. Merlin, L. Arnberg, and G. Garagnani, The Influence of Ni and V Trace Elements on High-Temperature Tensile Properties and Aging of A356 Aluminum Foundry Alloy, Metall. Mater. Trans. A, 2016, 47(5), p 2049–2057CrossRefGoogle Scholar
  15. 15.
    L. Lattanzi, M. Di Giovanni, M. Giovagnoli, A. Fortini, M. Merlin, D. Casari, M. Di Sabatino, E. Cerri, and G. Garagnani, Room Temperature Mechanical Properties of A356 Alloy with Ni Additions from 0.5 to 2 wt.%, Metals, 2018, 8, p 224CrossRefGoogle Scholar
  16. 16.
    S. Pramod, A.K.P. Rao, B. Murty, and S. Bakshi, Effect of Sc Addition and T6 Aging Treatment on the Microstructure Modification and Mechanical Properties of A356 Alloy, Mater. Sci. Eng. A, 2016, 674, p 438–450CrossRefGoogle Scholar
  17. 17.
    S. Mondol, T. Alam, R. Banerjee, S. Kumar, and K. Chattopadhyay, Development of a High Temperature High Strength Al Alloy by Addition of Small Amounts of Sc and Mg to 2219 Alloy, Mater. Sci. Eng. A, 2017, 687, p 221–231CrossRefGoogle Scholar
  18. 18.
    A. Farkoosh, X. Grant Chen, and M. Pekguleryuz, Dispersoid Strengthening of a High Temperature Al-Si-Cu-Mg Alloy via Mo Addition, Mater. Sci. Eng. A, 2015, 620, p 181–189CrossRefGoogle Scholar
  19. 19.
    M. Colombo, E. Gariboldi, and A. Morri, Influences of Different Zr Additions on the Microstructure, Room and High Temperature Mechanical Properties of an Al-7Si-0.4 Mg Alloy Modified with 0.25%Er, Mater. Sci. Eng. A, 2018, 713, p 151–160CrossRefGoogle Scholar
  20. 20.
    M. Colombo, E. Gariboldi, and A. Morri, Er Addition to Al-Si-Mg-Based Casting Alloy: Effects on Microstructure, Room and High Temperature Mechanical Properties, J. Alloys Compd., 2017, 708, p 1234–1244CrossRefGoogle Scholar
  21. 21.
    Z. Gao, H. Li, Y. Lai, Y. Ou, and D. Li, Effects of Minor Zr and Er on Microstructure and Mechanical Properties of Pure Aluminum, Mater. Sci. Eng. A, 2013, 580, p 92–98CrossRefGoogle Scholar
  22. 22.
    M. Tocci, R. Donnini, G. Angella, and A. Pola, Effect of Cr and Mn Addition and Heat Treatment on AlSi3Mg Casting Alloy, Mater. Charact., 2017, 123, p 75–82CrossRefGoogle Scholar
  23. 23.
    M. Tocci, M. Losio, P. Suwanpinji, and A. Pola, Experimental Investigation on the Formation of Cr-Containing Dispersoids in an AlSi3 Alloy by X-Ray Synchrotron Radiation, J. Alloys Compd., 2018, 742, p 555–562CrossRefGoogle Scholar
  24. 24.
    M. Tocci, A. Pola, L. Montesano, G. La Vecchia, M. Merlin, and G. Garagnani, Investigation of Mechanical Properties of AlSi3Cr Alloy, Frattura Integr. Strutt., 2017, 42, p 337–351CrossRefGoogle Scholar
  25. 25.
    G. Gottardi, M. Tocci, M. Montesano, and A. Pola, Cavitation Erosion Behaviour of an Innovative Aluminium Alloy for Hybrid Aluminium Forging, Wear, 2018, 394–395, p 1–10CrossRefGoogle Scholar
  26. 26.
    Y. Wang, H. Liao, Y. Wu, and J. Yang, Effect of Si Content on Microstructure and Mechanical Properties of Al-Si-Mg Alloys, Mater. Des., 2014, 53, p 634–638CrossRefGoogle Scholar
  27. 27.
    B. Zhu, P. Leisner, S. Seifeddine, and E. Jarfors, Influence of Si and Cooling Rate on Microstructure and Mechanical Properties of Al-Si-Mg Cast Alloys, Surf. Interface Anal., 2016, 48, p 861–869CrossRefGoogle Scholar
  28. 28.
    D. Dwivedi, R. Sharma, and A. Kumar, Influence of Silicon Content and Heat Treatment Parameters on Mechanical Properties of Cast Al-Si-Mg Alloys, Int. J. Cast Met. Res., 2006, 19(5), p 275–282CrossRefGoogle Scholar
  29. 29.
    S. Joseph and S. Kumar, A Systematic Investigation of Fracture Mechanisms in Al-Si Based Eutectic Alloy-Effect of Si Modification, Mater. Sci. Eng. A, 2013, 588, p 111–124CrossRefGoogle Scholar
  30. 30.
    M. Dighe and A. Gokhale, Relationship Between Microstructural Extremum and Fracture Path in a Cast Al-Si-Mg Alloy, Scr. Mater., 1997, 9(1), p 1435–1440CrossRefGoogle Scholar
  31. 31.
    C. Caceres, C. Davidson, and J. Griffiths, The Deformation and Fracture Behaviour of an AlSiMg Casting Alloy, Mater. Sci. Eng. A, 1995, 197(2), p 171–179CrossRefGoogle Scholar
  32. 32.
    T. Hosch and R. Napolitano, The Effect of the Flake to Fiber Transition in Silicon Morphology on the Tensile Properties of Al-Si Eutectic Alloys, Mater. Sci. Eng. A, 2010, 582(1), p 226–232CrossRefGoogle Scholar
  33. 33.
    A. Fortini, L. Lattanzi, M. Merlin, and G. Garagnani, Comprehensive Evaluation of Modification Level Assessment in Sr-Modified Aluminium Alloys, Int. J. Metalcast., 2018, 12(4), p 697–711CrossRefGoogle Scholar
  34. 34.
    M. Tocci, A. Pola, L. Raza, L. Armellin, and U. Afeltra, Optimization of Heat Treatment Parameters for a Non-conventional Al-Si-Mg Alloy with Cr Addition by DoE Method, Metall. Ital., 2016, 6, p 141–144Google Scholar
  35. 35.
    S. Shabestari, The Effect of Iron and Manganese on the Formation of Intermetallic Compounds in Aluminum-Silicon Alloys, Mater. Sci. Eng. A, 2004, 383, p 289–298CrossRefGoogle Scholar
  36. 36.
    J. Taylor, Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys, Procedia Mater. Sci., 2012, 1, p 19–33CrossRefGoogle Scholar
  37. 37.
    M. Drouzy, S. Jacob, and M. Richard, Interpretation of Tensile Results by Means of Quality Index and Probable Yield Strength, AFS Int. Cast Met. J., 1980, 5(2), p 43–50Google Scholar
  38. 38.
    M. Tiryakioğlu, J. Campbell, and N. Alexopoulos, Quality Indices for Aluminum Alloy Castings: A Critical Review, Metall. Mater. Trans. B, 2009, 40B, p 802–811CrossRefGoogle Scholar
  39. 39.
    C. Càceres, Microstructure Design and Heat Treatment Selection for Casting Alloys Using the Quality Index, J. Mater. Eng. Perform., 2000, 9(2), p 215–221CrossRefGoogle Scholar
  40. 40.
    C. Càceres, I. Svensson, and J. Taylor, Strength-Ductility Behaviour of Al-Si-Cu-Mg Casting Alloys in T6 Temper, Int. J. Cast Met. Res., 2003, 15(5), p 531–543CrossRefGoogle Scholar
  41. 41.
    N. Alexopoulos and M. Tiryakioǧlu, On the Uniform Elongation of Cast Al-7%Si-0.6%Mg (A357) Alloys, Mater. Sci. Eng. A, 2009, 507, p 236–240CrossRefGoogle Scholar
  42. 42.
    E. Sjolander, Heat Treatment of Al-Si-Cu-Mg Casting Alloys, Ph.D. Dissertation, Department of Mechanical Engineering School of Engineering, Jönköping University, 2011.Google Scholar
  43. 43.
    H. Elhadari, H. Patel, D. Chen, and W. Kasprzak, Tensile and Fatigue Properties of Cast Aluminium Alloy with Ti, Zr and V Additions, Mater. Sci. Eng. A, 2011, 528, p 8128–8138CrossRefGoogle Scholar
  44. 44.
    E. Gariboldi, J. Lemke, L. Rovatti, O. Baer, G. Timelli, and F. Bonollo, High Temperature Behavior of High Pressure Die Cast Alloys Based on the Al-Si-Cu System: The Role Played by Chemical Composition, Metals, 2018, 8(5), p 348CrossRefGoogle Scholar
  45. 45.
    J. Ferguson, H. Lopez, K. Cho, and C. Kim, Temperature Effects on the Tensile Properties of Precipitation-Hardened Al-Mg-Cu-Si Alloys, Metals, 2016, 6, p 43CrossRefGoogle Scholar
  46. 46.
    L. Lodgaard and N. Ryum, Precipitation of Dispersoids Containing Mn and/or Cr in Al-Mg-Si Alloys, Mater. Sci. Eng. A, 2000, 283, p 144–152CrossRefGoogle Scholar
  47. 47.
    R. Hu, T. Ogura, H. Tezuka, T. Sato, and Q. Liu, Dispersoid Formation and Recrystallization Behavior in an Al-Mg-Si-Mn Alloy, J. Mater. Sci. Technol., 2010, 26, p 237CrossRefGoogle Scholar
  48. 48.
    L. Lodgaard and N. Ryum, Precipitation of Chromium Containing Dispersoids in Al-Mg-Si Alloys, Mater. Sci. Technol., 2000, 16, p 599–604CrossRefGoogle Scholar
  49. 49.
    R. Kemsies, B. Milkereit, S. Wenner, R. Holmestad, and O. Kessler, In Situ DSC Investigation Into the Kinetics and Microstructure of Dispersoid Formation in Al-Mn-Fe-Si(-Mg) Alloys, Mater. Des., 2018, 146, p 96–107CrossRefGoogle Scholar
  50. 50.
    D. Askeland, P. Fulay, and W. Wright, The Science and Engineering of Materials, Cengage Learning, Boston, 2011Google Scholar
  51. 51.
    M. Rahimian, S. Amirkhanlou, P. Blake, and S. Ji, Nanoscale Zr-Containing Precipitates: A Solution for Significant Improvement of High-Temperature Strength in Al-Si-Cu-Mg Alloys, Mater. Sci. Eng. A, 2018, 721, p 328–338CrossRefGoogle Scholar
  52. 52.
    P. Hidnert and H. Krider, Thermal Expansion of Aluminum and Some Aluminum Alloys, J. Res. Natl. Bur. Stand., 1952, 48(3), p 209–220CrossRefGoogle Scholar
  53. 53.
    W. Kasprzak, D. Chen, and S. Shaha, Heat Treatment Development for a Rapidly Solidified Heat Resistant Cast Al-Si Alloy, J. Mater. Eng. Perform., 2013, 22(7), p 1839–1847CrossRefGoogle Scholar
  54. 54.
    H. Lopez, Microstructural Features Associated with the Effect of Temperature on the Dimensional Stability of an Automotive Al-A319 Alloy, AIMS Mater. Sci., 2016, 3(2), p 634–644CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Marialaura Tocci
    • 1
    Email author
  • Riccardo Donnini
    • 2
  • Giuliano Angella
    • 2
  • Elisabetta Gariboldi
    • 3
  • Annalisa Pola
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of BresciaBresciaItaly
  2. 2.Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE)National Research Council of Italy (CNR)MilanItaly
  3. 3.Department of Mechanical EngineeringPolitecnico di MilanoMilanItaly

Personalised recommendations