Advertisement

Metallurgical Characterization of a Low Carbon Steel Microstructure Using Linear and Nonlinear Ultrasonics

  • Niloofar Nabili Tehrani
  • Zeynab Abbasi
  • Didem Ozevin
  • J. Ernesto IndacocheaEmail author
Article
  • 43 Downloads

Abstract

In this study, linear and nonlinear ultrasonic (UT) methods are utilized to evaluate the microstructures of A572 low carbon steel samples that were intercritically heat-treated at three temperatures and quenched to room temperature. The microstructures were also qualitatively and quantitatively assessed using standard metallography. ImageJ software was used to measure the amount of the phases. Correlations between ferrite content and linear velocity and the acoustoelastic coefficient are established. The experiments show that the UT linear and nonlinear velocities are affected by varying the amounts of ferrite and martensite. The acoustoelastic coefficient is found to be more sensitive to small changes in ferrite volume fraction.

Keywords

A572 steel acoustoelastic coefficient ferrite and martensite intercritical heat treatment linear and nonlinear ultrasonics 

Notes

Acknowledgments

This investigation was supported by National Science Foundation Awards 133552 and 1463501. C-SAM equipment was acquired by DoD Equipment Contract No. W911NF-16-1-0500. The support from the sponsoring organizations is gratefully acknowledged. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the organizations acknowledged above.

References

  1. 1.
    V.L.A. de Freitas, V.H.C. de Albuquerque, E.M. de Silva, A.A. Silva, and J.M.R.S. Tavarese, Nondestructive Characterization of Microstructures and Determination of Elastic Properties in Plain Carbon Steel Using Ultrasonic Measurements, Mater. Sci. Eng. A, 2010, 527, p 4431–4437.  https://doi.org/10.1016/j.msea.2010.03.090 CrossRefGoogle Scholar
  2. 2.
    R. Prasad and S. Kumar, Study of the Influence of Deformation and Thermal Treatment on the Ultrasonic Behaviour of Steel, J. Mater. Process. Technol., 1994, 42, p 51–59.  https://doi.org/10.1016/0924-0136(94)90074-4 CrossRefGoogle Scholar
  3. 3.
    C. Hakan Gür and B.O. Tuncer, Characterization of Microstructural Phases of Steels by Sound Velocity Measurement, Mater. Charact., 2005, 55, p 160–166.  https://doi.org/10.1016/j.matchar.2005.05.002 CrossRefGoogle Scholar
  4. 4.
    A. Badidi Bouda, S. Lebaili, and A. Benchaala, Grain Size Influence on Ultrasonic Velocities and Attenuation, NDT E Int., 2003, 36, p 1–5.  https://doi.org/10.1016/s0963-8695(02)00043-9 CrossRefGoogle Scholar
  5. 5.
    P. Palanichamy, A. Joseph, T. Jayakumar, and B. Raj, Ultrasonic Velocity Measurements for Estimation of Grain Size in Austenitic Stainless Steel, NDT E Int., 1995, 28, p 179–185.  https://doi.org/10.1016/0963-8695(95)00011-L CrossRefGoogle Scholar
  6. 6.
    A.A. Buenos, P. Pereira, P.R. Mei, and A.A. dos Santos, Influence of Grain Size on the Propagation of LCR Waves in Low Carbon Steel, J. Nondestruct. Eval., 2014, 33, p 562–570.  https://doi.org/10.1007/s10921-014-0252-x CrossRefGoogle Scholar
  7. 7.
    B. Ahn, S. Seok Lee, S. Taik Hong, H. Chul Kim, and S.-J.L. Kang, Application of the Acoustic Resonance Method to Evaluate the Grain Size of Low Carbon Steels, NDT E Int., 1999, 32, p 85–89.  https://doi.org/10.1016/s0963-8695(98)00032-2 CrossRefGoogle Scholar
  8. 8.
    F. Dong, X. Wang, Q. Yang, A. Yin, and X. Xu, Directional Dependence of Aluminum Grain Size Measurement by Laser-Ultrasonic Technique, Mater. Charact., 2017, 129, p 114–120.  https://doi.org/10.1016/j.matchar.2017.04.027 CrossRefGoogle Scholar
  9. 9.
    Z. Abbasi, N. Tehrani, D. Ozevin, and J.E. Indacochea, The Influence of Ferrite Volume Fraction on Rayleigh Wave Propagation in A572 Grade 50 Steel, AIP Conf. Proc., AIP Publishing, 2017, p 90001Google Scholar
  10. 10.
    H. Carreon, A. Ruiz, A. Medina, G. Barrera, and J. Zarate, Characterization of the Alumina–Zirconia Ceramic System by Ultrasonic Velocity Measurements, Mater. Charact., 2009, 60, p 875–881.  https://doi.org/10.1016/j.matchar.2009.02.008 CrossRefGoogle Scholar
  11. 11.
    Bouda A. Badidi, A. Benchaala, and K. Alem, Ultrasonic Characterization of Materials Hardness, Ultrasonics, 2000, 38, p 224–227.  https://doi.org/10.1016/s0041-624x(99)00081-5 CrossRefGoogle Scholar
  12. 12.
    G.V.S. Murthy, G. Sridhar, A. Kumar, and T. Jayakumar, Characterization of Intermetallic Precipitates in a Nimonic Alloy by Ultrasonic Velocity Measurements, Mater. Charact., 2009, 60, p 234–239.  https://doi.org/10.1016/j.matchar.2008.09.009 CrossRefGoogle Scholar
  13. 13.
    A. Castellano, A. Fraddosio, S. Marzano, and M. Daniele Piccioni, Some Advancements in the Ultrasonic Evaluation of Initial Stress States by the Analysis of the Acoustoelastic Effect, Procedia Eng., 2017, 199, p 1519–1526.  https://doi.org/10.1016/j.proeng.2017.09.494 CrossRefGoogle Scholar
  14. 14.
    M. Hirao, H. Ogi, and H. Fukuoka, Resonance EMAT System for Acoustoelastic Stress Measurement in Sheet Metals, Rev. Sci. Instrum., 1993, 64, p 3198–3205.  https://doi.org/10.1063/1.1144328 CrossRefGoogle Scholar
  15. 15.
    J.S. Heyman, S.G. Allison, and K. Salama, Influence of Carbon Content on Higher Order Ultrasonic Properties in Steels, Ultrason. Symp., 1983, p 991–994Google Scholar
  16. 16.
    S.G. Allison, J.S. Heyman, and K. Salama, Ultrasonic Measurement of Residual Deformation Stress in Thin Metal Plates Using Surface Acoustic Waves, 1983 Ultrasonics Symposium, IEEE, 1983, p 995–999Google Scholar
  17. 17.
    K. Salama, Nondestructive Ultrasonic Characterization of Engineering Materials, OSTI Technical Report 5950114 - N-86-15680, 1985Google Scholar
  18. 18.
    A. Mostavi, N. Kamali, N. Tehrani, S.-W. Chi, D. Ozevin, and J.E. Indacochea, Wavelet Based Harmonics Decomposition of Ultrasonic Signal in Assessment of Plastic Strain in Aluminum, Measurement, 2017, 106, p 66–78CrossRefGoogle Scholar
  19. 19.
    J. Schindelin, et al., Fiji: An Open-Source Platform for Biological-Image Analysis, Nat. Methods, 2012, 9, pp 676–682CrossRefGoogle Scholar
  20. 20.
    P.L. Mangonon, The Principles of Materials Selection for Engineering Design, Prentice Hall, 1998. https://books.google.com/books?id=caoeAQAAIAAJ
  21. 21.
    G. Krauss, Steels: Heat Treatment and Processing Principles, ASM International, 1990. https://books.google.com/books?id=0rVTAAAAMAAJ
  22. 22.
    M.M. El Rayes, E.A. El-Danaf, and A.A. Almajid, Characterization and Correlation of Mechanical, Microstructural and Ultrasonic Properties of Power Plant Steel, Mater. Charact., 2015, 100, p 120–134.  https://doi.org/10.1016/j.matchar.2014.11.034 CrossRefGoogle Scholar
  23. 23.
    D.E. Bray and D.M. Egle, Measurement of Acoustoelastic and Third-Order Elastic Constants for Rail Steel, Acoust. Soc. Am., 1976, 60, p 741–744CrossRefGoogle Scholar
  24. 24.
    F. Shi, J.E. Michaels, and S.J. Lee, In Situ Estimation of Applied Biaxial Loads with Lamb Waves, J. Acoust. Soc. Am., 2013, 133, p 677–687.  https://doi.org/10.1121/1.4773867 CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Niloofar Nabili Tehrani
    • 1
  • Zeynab Abbasi
    • 1
  • Didem Ozevin
    • 1
  • J. Ernesto Indacochea
    • 1
    Email author
  1. 1.Civil and Materials Engineering DepartmentUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations