Advertisement

Characteristics and Tribological Behaviors of TiAlN/Cr-Ni Composite Coatings at Elevated Temperatures

  • Li Jiahong
  • Kong DejunEmail author
Article
  • 10 Downloads

Abstract

A TiAlN/Cr-Ni composite coating was fabricated on H13 hot work mold steel using a cathode ion arc plating and laser cladding. The surface and cross-sectional morphologies, chemical compositions, phases and surface roughness of obtained coating were analyzed using a scanning electron microscope, energy disperse spectroscopy, x-ray diffraction and atomic force microscope, respectively, and the bonding strength was measured using a scratch test. The friction-wear properties of TiAlN/Cr-Ni coating at 400, 500 and 600 °C were investigated using a ball-on-disc wear test. The results show that the TiAlN coating is primarily composed of c-TiN and c-AlN hard phases, and the bonding strength of TiAlN coating with the Cr-Ni coating is 22.15 N. The average coefficients of friction of TiAlN/Cr-Ni coating at 400, 500 and 600 °C are 0.458, 0.318 and 0.449, respectively, and the corresponding wear rates are 0.329 × 10−3, 0.384 × 10−3 and 0.205 × 10−3 mm3 N−1 s−1, respectively, and the wear mechanism includes adhesive wear and oxidation wear.

Keywords

cathode ion arc plating (CAIP) laser cladding (LC) TiAlN/Cr-Ni coating coefficient of friction (COF) wear mechanism wear rate 

Notes

Acknowledgments

Financial support for this research by the Key Research and Development Project of Jiangsu Province (BE2016052) is gratefully acknowledged.

References

  1. 1.
    Y.G. Min, X.H. Wu, R. Wang, L. Li, and L.P. Xu, Prediction and Analysis on Oxidation of H13 Hot Work Steel, J. Iron. Steel Res. Int., 2006, 13(1), p 44–49CrossRefGoogle Scholar
  2. 2.
    J.Y. Li, Y.L. Chen, and J.H. Hu, Mechanism of Improvement on Strength and Toughness of H13 Die Steel by Nitrogen, Mater. Sci. Eng., A, 2015, 640, p 16–23CrossRefGoogle Scholar
  3. 3.
    B.J. Xiao, Y. Chen, W. Dai, K.Y. Kwork, T.F. Zhang, Q.M. Wang, C.Y. Wang, and K.H. Kim, Microstructure, Mechanical Properties and Cutting Performance of AlTiN Coatings Prepared via Arc Ion Plating Using the Arc Splitting technique, Surf. Coat. Technol., 2017, 311, p 98–103CrossRefGoogle Scholar
  4. 4.
    S. PalDey and S.C. Deevi, Single Layer and Multilayer Wear Resistant Coatings of (Ti, Al)N: A Review, Mater. Sci. Eng., A, 2003, 342(1), p 58–79CrossRefGoogle Scholar
  5. 5.
    J.H. Li and D.J. Kong, Microstructures and High-Temperature Friction-Wear Performances of Laser Cladded Cr-Ni Coatings, Materials, 2018, 11(1), p 137CrossRefGoogle Scholar
  6. 6.
    P.R. Zhang and Z.Q. Liu, Enhancing Surface Integrity and Corrosion Resistance of Laser Cladded Cr-Ni Alloys by Hard Turning and Low Plasticity Burnishing, Appl. Surf. Sci., 2017, 409, p 169–178CrossRefGoogle Scholar
  7. 7.
    M.S. Yang, X.B. Liu, J.W. Fan, X.M. He, and S.F. Chen, Microstructure and Wear Behaviors of Laser Clad NiCr/Cr3C2-WS2 High Temperature Self-lubricating Wear-Resistant Composite Coating, Appl. Surf. Sci., 2012, 258(8), p 3757–3762CrossRefGoogle Scholar
  8. 8.
    M.F. Gong, J. Chen, X. Deng, and S.H. Wu, Sliding Wear Behavior of TiAlN and AlCrN Coatings on a Unique Cemented Carbide Substrate, Int. J. Refract. Metals Hard Mater., 2017, 69, p 209–214CrossRefGoogle Scholar
  9. 9.
    B. Wang and Z.Q. Liu, Cutting Performance of Solid Ceramic End Milling Tools in Machining Hardened AISI, H13 Steel, Int. J. Refract. Metals Hard Mater., 2016, 55, p 24–32CrossRefGoogle Scholar
  10. 10.
    W. Su, Z. Huang, X.R. Ren, H. Chen, and J.M. Ruan, Investigation on Morphology Evolution of Coarse Grained WC-6Co Cemented Carbides Fabricated by Ball Milling Route and Hydrogen Reduction Route, Int. J. Refract. Metals Hard Mater, 2016, 56, p 110–117CrossRefGoogle Scholar
  11. 11.
    G. Östberg, K. Buss, M. Christensen, S. Norgren, H.O. Andrén, D. Mari, G. Wahnström, and I. Reineck, Mechanisms of Plastic Deformation of WC-Co and Ti(C, N)-WC-Co, Int. J. Refract. Metals Hard Mater., 2006, 24(1), p 135–144CrossRefGoogle Scholar
  12. 12.
    J.F. Yuan, K. Yamamoto, D. Covelli, M. Tauhiduzzaman, T. Arif, I.S. Gershman, S.C. Veldhuis, and G.S. Fox-Rabinovich, Tribo-Films Control in Adaptive TiAlCrSiYN/TiAlCrN Multilayer PVD Coating by Accelerating the Initial Machining Conditions, Surf. Coat. Technol., 2016, 294, p 54–61CrossRefGoogle Scholar
  13. 13.
    K. Aslants, I. Ucun, and A. Cicek, Tool Life and Wear Mechanism of Coated and Uncoated Al2O3/TiCN Mixed Ceramic Tools in Turning Hardened Alloy Steel, Wear, 2012, 274–275(3), p 442–451CrossRefGoogle Scholar
  14. 14.
    W. Yang, J. Xiong, Z.X. Guo, H. Du, T.E. Yang, J. Tang, and B. Wen, Structure and Properties of PVD TiAlN and TiAlN/CrAlN Coated Ti(C, N)-Based Cermets, Ceram. Int., 2017, 43(2), p 1911–1915CrossRefGoogle Scholar
  15. 15.
    P. Ettmayer, H. Kolaska, and W. Lengauer, Ti(C, N) Cermets-Metallurgy and Properties, Int. J. Refract. Metals Hard Mater, 1995, 13(6), p 343–351CrossRefGoogle Scholar
  16. 16.
    Y.M. Wu, J. Xiong, Z.X. Guo, M. Yang, J.Z. Chen, S.J. Xiong, H.Y. Fan, and J.J. Luo, Microstructure and Fracture Toughness of Ti(C0.7N0.3)-WC-Ni Cermets, Int. J. Refract. Metals Hard Mater., 2011, 29(1), p 85–89CrossRefGoogle Scholar
  17. 17.
    S. Bolognini, G. Feusier, D. Mari, T. Viatte, and W. Benoit, TiMoCN-Based Cermets: High-Temperature Deformation, Int. J. Refract. Metals Hard Mater., 2003, 21(1), p 19–29CrossRefGoogle Scholar
  18. 18.
    B.D. Beake, L. Ning, C. Gey, S.C. Veldhuis, A. Komarov, A. Weaver, M. Khanna, and G.S. Fox-Rabinovich, Wear Performance of Different PVD Coatings During Hard Wet End Milling of H13 Tool Steel, Surf. Coat. Technol., 2015, 279, p 118–125CrossRefGoogle Scholar
  19. 19.
    C. Nouveau, C. Labidi, R. Collet, Y. Benlatreche, and M.A. Djouadi, Effect of Surface Finishing Such as Sand Blasting and CrAlN Hard Coatings on the Cutting Edge’s Peeling Tool’s Wear Resistance, Wear, 2009, 267(5), p 1062–1067CrossRefGoogle Scholar
  20. 20.
    Y. Long, J.J. Zeng, D.H. Yu, and S.H. Wu, Microstructure of TiAlN and CrAlN Coatings and Cutting Performance of Coated Silicon Nitride Inserts in Cast Iron Turning, Ceram. Int., 2014, 140(7), p 9889–9894CrossRefGoogle Scholar
  21. 21.
    R.L. Niu, J.L. Li, Y.X. Wang, J.M. Chen, and Q.J. Xue, Structure and High Temperature Tribological Behavior of TiAlN/Nitride Duplex Treated Coatings on Ti6Al4V, Surf. Coat. Technol., 2017, 309, p 232–241CrossRefGoogle Scholar
  22. 22.
    Z. Zhou, W.M. Rainforth, Q. Luo, P.E. Hovsepian, J.J. Ojeda, and M.E. Romero-Gonzalez, Wear and Friction of TiAlN/VN Coatings Against Al2O3 in Air at Room and Elevated Temperatures, Acta Mater., 2010, 58(8), p 2912–2925CrossRefGoogle Scholar
  23. 23.
    P.E. Hovsepian, D.B. Lewis, Q. Luo, W.D. Münz, P.H. Mayrhofer, C. Mitterer, Z. Zhou, and W.M. Rainforthc, TiAlN Based Nanoscale Multilayer Coatings Designed to Adapt Their Tribological Properties at Elevated Temperatures, Thin Solid Films, 2005, 485(1–2), p 160–168CrossRefGoogle Scholar
  24. 24.
    J.X. Deng and A.H. Liu, Dry Sliding Wear Behavior of PVD TiN, Ti55Al45N, and Ti35Al65N Coatings at Temperatures up to 600 °C, Int. J. Refract. Metals Hard Mater., 2013, 41, p 241–249CrossRefGoogle Scholar
  25. 25.
    A. Hörling, L. Hultman, M. Odén, J. Sjölén, and L. Karlsson, Mechanical Properties and Machining Performance of Ti1−xAlxN-coated Cutting Tools, Surf. Coat. Technol., 2005, 191(2–3), p 384–392CrossRefGoogle Scholar
  26. 26.
    Y.C. Chim, X.Z. Ding, X.T. Zeng, and S. Zhang, Oxidation Resistance of TiN, CrN, TiAlN and CrAlN Coatings Deposited by Lateral Rotating Cathode Arc, Thin Solid Films, 2009, 517(17), p 4845–4849CrossRefGoogle Scholar
  27. 27.
    A.Y. Adesina, F.A. Al-Badour, and Z.M. Gasem, Wear Resistance Performance of AlCrN and TiAlN Coated H13 Tools During Friction Stir Welding of A2124/SiC Composite, J. Manuf. Proc., 2018, 33, p 111–125CrossRefGoogle Scholar
  28. 28.
    C. Kunze, D. Music, M.T. Baben, J.M. Schneider, and G. Grundmeier, Temporal Evolution of Oxygen Chemisorption on TiAlN, Appl. Surf. Sci., 2014, 290, p 504–508CrossRefGoogle Scholar
  29. 29.
    Q. Luo, Temperature Dependent Friction and Wear of Magnetron Sputtered Coating TiAlN/VN, Wear, 2011, 271(9–10), p 2058–2066CrossRefGoogle Scholar
  30. 30.
    W.Y.H. Liew, J.L.L. Jie, L.Y. Yan, J.D.C.S. Sipaut, and M.F.B. Madlan, Frictional and Wear Behaviour of AlCrN, TiN, TiAlN Single-Layer Coatings, and TiAlN/AlCrN, AlN/TiN Nano-multilayer Coatings in Dry Sliding, Procedia Eng., 2013, 68(12), p 512–517CrossRefGoogle Scholar
  31. 31.
    G.M. Zheng, G.Y. Zhao, X. Cheng, R.F. Xu, J. Zhao, and H.Q. Zhang, Frictional and Wear Performance of TiAlN/TiN Coated Tool Against High-Strength Steel, Ceram. Int., 2018, 44, p 6878–6885CrossRefGoogle Scholar
  32. 32.
    S.Y. Chen, D.F. Luo, and G.B. Zhao, Investigation of the Properties of TixCr1−xN Coatings Prepared by Cathodic Arc Deposition, Phys. Procedia, 2013, 50, p 163–168CrossRefGoogle Scholar
  33. 33.
    W. Gulbinski, S. Mathur, H. Shen, T. Suszko, and A. Gilewicz, Evaluation of Phase, Composition, Microstructure and Properties in TiC/a-C:H Thin Films Deposited by Magnetron Sputtering, Appl. Surf. Sci., 2005, 293(3), p 302–310CrossRefGoogle Scholar
  34. 34.
    A. Rizzo, L. Mirenghi, M. Massaro, U. Galietti, L. Capodieci, R. Terzi, L. Tapfer, and D. Valerini, Improved Properties of TiAlN Coatings Through the Multilayer Structure, Surf. Coat. Technol., 2013, 235(22), p 475–483CrossRefGoogle Scholar
  35. 35.
    S.H. Zhang, W.W. Wu, W.L. Chen, and S.B. Yang, Structural Optimisation and Synthesis of Multilayers and Nanocomposite AlCrTiSiN Coatings for Excellent Machinability, Surf. Coat. Technol., 2015, 277, p 23–29CrossRefGoogle Scholar
  36. 36.
    D.K. Li, J.F. Chen, C.W. Zou, J.H. Ma, P.F. Li, and Y. Li, Effects of Al Concentrations on the Microstructure and Mechanical Properties of Ti-Al-N Films Deposited by RF-ICPIS Enhanced Magnetron Sputtering, J. Alloys Compd., 2014, 609(6), p 239–243Google Scholar
  37. 37.
    B.D. Beake, J.L. Endrino, C. Kimpton, G.S. Fox-Rabinovich, and S.C. Veldhuis, Elevated Temperature Repetitive Micro-scratch Testing of AlCrN, TiAlN and AlTiN PVD Coatings, Int. J. Refract. Metals Hard Mater., 2017, 69, p 215–226CrossRefGoogle Scholar
  38. 38.
    A. Liu, J. Deng, H. Cui, Y. Chen, and J. Zhao, Friction and Wear Properties of TiN, TiAlN, AlTiN and CrAlN PVD Nitride Coatings, Int. J. Refract. Metals Hard Mater., 2012, 31, p 82–88CrossRefGoogle Scholar
  39. 39.
    Y. Tang, B. Ma, B. Liu, W. Yuan, B.H. Yu, and L.S. Lu, Influences of Sedimentation Time and Target Current Ratio on Wear Resistance of a Magnetron Sputtered TiAlN Coating, Rare Metals Mater. Eng., 2016, 45(12), p 3057–3061CrossRefGoogle Scholar
  40. 40.
    M.H. Staia, M. D’Alessandria, D.T. Quinto, F. Roudet, and A.M. Marsal, High-Temperature Tribological Characterisation of Commercial TiAlN Coatings, J Phys. Condens. Mater., 2006, 32(18), p 1727–1736CrossRefGoogle Scholar
  41. 41.
    C.S. Kumar and S.K. Patel, Performance Analysis and Comparative Assessment of Nano-composite TiAlSiN/TiSiN/TiAlN Coating in Hard Turning of AISI, 52100 Steel, Surf. Coat. Technol., 2018, 335, p 265–279CrossRefGoogle Scholar
  42. 42.
    Z.B. Qi, P. Sun, F.P. Zhu, Z.T. Wu, B. Liu, and Z.C. Wang, Relationship Between Tribological Properties and Oxidation Behavior of Ti0.34Al0.66N Coatings at Elevated Temperature up to 900 C, Surf. Coat. Technol., 2013, 231, p 267–272CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations