Advertisement

Sensing Capability of Air Plasma-Sprayed SnO2 Coating in the Presence of Hydrogen and Carbon Monoxide

  • V. Ambardekar
  • P. P. BandyopadhyayEmail author
  • S. B. Majumder
Article
  • 62 Downloads

Abstract

This report deals with the sensing characteristics of hydrogen (H2) and carbon monoxide (CO) gases using a tin oxide (SnO2) functional coating deposited on an alumina plate using air plasma spraying technique. This coating exhibits a porous morphology that contains both mesoporous and macroporous regions conducive to superior gas sensing. Initially, gas sensing measurements were performed by varying the operating temperature at a fixed gas concentration using a dynamic sensing setup. The coating showed maximum response % at 275 °C for H2 and CO gases. However, higher response % was obtained in the presence of H2 over CO. Sensing performance was further investigated by varying the target gas concentration at 275 °C. The coating exhibited a higher response for H2 compared to that of other plasma-sprayed SnO2 coating reported in the literature. The SnO2 coating under investigation demonstrated good sensor response and repeatability, moderate operating temperature and quick response time.

Keywords

air plasma spray gas sensing porous morphology SnO2 coating 

Notes

Acknowledgments

The above research work was partially supported by the research grant obtained from CSIR, Government of India; vide sanction Letter No. 03/(1371)/16/EMR-II, dated 10-05-2016 and DST, Government of India; vide sanction letter Nos. 5(1)/2017-NANO dated 28-03-2018 and DST/NM/NNETRA/2018(G)-IITKGP dated 21-03-2018.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    V. Aroutiounian, Metal Oxide Hydrogen, Oxygen, and Carbon Monoxide Sensors for Hydrogen Setups and Cells, Int. J. Hydrogen Energy, 2007, 32(9), p 1145–1158CrossRefGoogle Scholar
  2. 2.
    S. Verhelst, Recent Progress in the Use of Hydrogen as a Fuel for Internal Combustion Engines, Int. J. Hydrogen Energy, 2014, 39(2), p 1071–1085.  https://doi.org/10.1016/j.ijhydene.2013.10.102 CrossRefGoogle Scholar
  3. 3.
    S.G. Leonardi, A. Bonavita, N. Donato, and G. Neri, Development of a Hydrogen Dual Sensor for Fuel Cell Applications, Int. J. Hydrogen Energy, 2018, 43(26), p 11896–11902.  https://doi.org/10.1016/j.ijhydene.2018.02.019 CrossRefGoogle Scholar
  4. 4.
    I. Dincer and C. Acar, Review and Evaluation of Hydrogen Production Methods for Better Sustainability, Int. J. Hydrogen Energy, 2014, 40(34), p 11094–11111.  https://doi.org/10.1016/j.ijhydene.2014.12.035 CrossRefGoogle Scholar
  5. 5.
    K. Mukherjee and S.B. Majumder, Hydrogen Sensing Characteristics of Nano-Crystalline Mg0.5Zn0.5Fe2O4 Thin Film: Effect of Film Thickness and Operating Temperature, Int. J. Hydrogen Energy, 2014, 39(2), p 1185–1191.  https://doi.org/10.1016/j.ijhydene.2013.10.158 CrossRefGoogle Scholar
  6. 6.
    T. Hübert, L. Boon-Brett, G. Black, and U. Banach, Hydrogen Sensors: A Review, Sensors Actuators B Chem., 2011, 157(2), p 329–352CrossRefGoogle Scholar
  7. 7.
    J. Yanez, M. Kuznetsov, and A. Souto-Iglesias, An Analysis of the Hydrogen Explosion in the Fukushima-Daiichi Accident, Int. J. Hydrogen Energy, 2015, 40(25), p 8261–8280.  https://doi.org/10.1016/j.ijhydene.2015.03.154 CrossRefGoogle Scholar
  8. 8.
    T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, W.J. Shen, and S. Imamura, Catalytic Steam Reforming of Ethanol to Produce Hydrogen and Acetone, Appl. Catal. A, 2005, 279(1–2), p 273–277CrossRefGoogle Scholar
  9. 9.
    H. Chen and Z. Mao, The Study on the Results of Hydrogen Pipeline Leakage Accident of Different Factors, IOP Conf. Ser. Earth Environ. Sci., 2017, 64(1), p 012002CrossRefGoogle Scholar
  10. 10.
    K.K. Bhargav, S. Ram, and S.B. Majumder, The Role of Catalytic Cobalt-Modified Lanthanum Ferrite Nano-Crystals in Selective Sensing of Carbon Monoxide, J. Mater. Sci., 2014, 50(2), p 644–651CrossRefGoogle Scholar
  11. 11.
    A. Ghosh, T. Bhowmick, N. Labhasetwar, and S.B. Majumder, Catalytic Oxidation and Selective Sensing of Carbon Monoxide for Sense and Shoot Device Using ZnO–CuO Hybrids, Materialia, Elsevier Ltd, 2018, 2019(5), p 100177.  https://doi.org/10.1016/j.mtla.2018.11.026 CrossRefGoogle Scholar
  12. 12.
    G. Reumuth, Z. Alharbi, K.S. Houschyar, B.S. Kim, F. Siemers, P.C. Fuchs, and G. Grieb, Carbon Monoxide Intoxication: What We Know, Burns, 2019, 45(3), p 526–530CrossRefGoogle Scholar
  13. 13.
    S.C. Jambagi, S. Kar, P. Brodard, and P.P. Bandyopadhyay, Characteristics of Plasma Sprayed Coatings Produced from Carbon Nanotube Doped Ceramic Powder Feedstock, Mater. Des., 2016, 112, p 392–401.  https://doi.org/10.1016/j.matdes.2016.09.095 CrossRefGoogle Scholar
  14. 14.
    M. Hadad, P.P. Bandyopadhyay, J. Michler, and J. Lesage, Tribological Behaviour of Thermally Sprayed Ti-Cr-Si Coatings, Wear, 2009, 267(5–8), p 1002–1008CrossRefGoogle Scholar
  15. 15.
    P.P. Bandyopadhyay, Processing and Characterisation of Plasma Sprayed Ceramic Coatings on Steel Substrate.”Ph.D Dissertation, Indian Institute of Technology, Kharagpur, (2000)Google Scholar
  16. 16.
    S. Datta, D.K. Pratihar, and P.P. Bandyopadhyay, Modeling of Plasma Spray Coating Process Using Statistical Regression Analysis, Int. J. Adv. Manuf. Technol., 2013, 65(5–8), p 967–980.  https://doi.org/10.1007/s00170-012-4232-y CrossRefGoogle Scholar
  17. 17.
    S. Kar, S. Paul, and P.P. Bandyopadhyay, Processing and Characterisation of Plasma Sprayed Oxides: Microstructure, Phases Residual Stress Surface Coat. Technol., 2016, 304(September), p 364–374CrossRefGoogle Scholar
  18. 18.
    S.C. Jambagi and P.P. Bandyopadhyay, Plasma Sprayed Carbon Nanotube Reinforced Splats and Coatings, J. Eur. Ceram. Soc., 2017, 37(5), p 2235–2244.  https://doi.org/10.1016/j.jeurceramsoc.2017.01.028 CrossRefGoogle Scholar
  19. 19.
    J. Longtin, S. Sampath, R.J. Gambino, S. Tankiewicz, and R. Greenlaw, Sensors for Harsh Environments by Direct Write Thermal Spray, Proc. IEEE Sensors, 2002, 1(1), p 598–601.  https://doi.org/10.1109/ICSENS.2002.1037168 CrossRefGoogle Scholar
  20. 20.
    T.S. Theophilou, J.P. Longtin, S. Sampath, S. Tankiewicz, and R.J. Gambino, Integrated Heat-Flux Sensors for Harsh Environments Using Thermal-Spray Technology, IEEE Sens. J., 2006, 6(5), p 1126–1132CrossRefGoogle Scholar
  21. 21.
    A.F. Ahlström-Silversand and C.U.I. Odenbrand, Thermally Sprayed Wire-Mesh Catalysts for the Purification of Flue Gases from Small-Scale Combustion of Bio-Fuel Catalyst Preparation and Activity Studies, Appl. Catal. A, 1997, 153(1), p 177–201CrossRefGoogle Scholar
  22. 22.
    C. Zhang, M. Debliquy, A. Boudiba, H. Liao, and C. Coddet, Sensing Properties of Atmospheric Plasma-Sprayed WO3 Coating for Sub-Ppm NO2 Detection, Sensors Actuators B Chem., 2010, 144(1), p 280–288CrossRefGoogle Scholar
  23. 23.
    C. Zhang, M. Debliquy, and H. Liao, Deposition and Microstructure Characterization of Atmospheric Plasma-Sprayed ZnO Coatings for NO2 Detection, Appl. Surface Sci., 2010, 256(20), p 5905–5910.  https://doi.org/10.1016/j.apsusc.2010.03.072 CrossRefGoogle Scholar
  24. 24.
    M. Gardon, O. Monereo, S. Dosta, G. Vescio, A. Cirera, and J.M. Guilemany, New Procedures for Building-up the Active Layer of Gas Sensors on Flexible Polymers, Surf. Coat. Technol., 2013, 235, p 848–852.  https://doi.org/10.1016/j.surfcoat.2013.09.011 CrossRefGoogle Scholar
  25. 25.
    G. Korotcenkov, Handbook of Gas Sensor Materials, Prop. Adv. Short. Appl., 2014, 2, p 15.  https://doi.org/10.1007/978-1-4614-7388-6 CrossRefGoogle Scholar
  26. 26.
    V. Ambardekar, P.P. Bandyopadhyay, and S.B. Majumder, Atmospheric Plasma Sprayed SnO2 Coating for Ethanol Detection, J. Alloys Compd., 2018, 752(2), p 440–447.  https://doi.org/10.1016/j.jallcom.2018.04.151 CrossRefGoogle Scholar
  27. 27.
    V. Ambardekar, P.P. Bandyopadhyay, and S.B. Majumder, Hydrogen Sensing Performance of Atmospheric Plasma Sprayed Tin Dioxide Coating, Int. J. Hydrogen Energy, 2019, 44, p 14092–14104.  https://doi.org/10.1016/j.ijhydene.2019.04.013 CrossRefGoogle Scholar
  28. 28.
    G.J. Li, X.H. Zhang, and S. Kawi, Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors, Sensors Actuators B Chem., 1999, 60(1), p 64–70CrossRefGoogle Scholar
  29. 29.
    M. Gardon and J.M. Guilemany, A Review on Fabrication, Sensing Mechanisms and Performance of Metal Oxide Gas Sensors, J. Mater. Sci. Mater. Electron., 2013, 24(5), p 1410–1421CrossRefGoogle Scholar
  30. 30.
    K. Sabiruddin, P.P. Bandyopadhyay, G. Bolelli, and L. Lusvarghi, Variation of Splat Shape with Processing Conditions in Plasma Sprayed Alumina Coatings, J. Mater. Process. Technol., 2011, 211(3), p 450–462.  https://doi.org/10.1016/j.jmatprotec.2010.10.020 CrossRefGoogle Scholar
  31. 31.
    S. Ghosh, S. Das, T.K. Bandyopadhyay, P.P. Bandyopadhyay, and A.B. Chattopadhyay, Indentation Responses of Plasma Sprayed Ceramic Coatings, J. Mater. Sci., 2003, 38(7), p 1565–1572CrossRefGoogle Scholar
  32. 32.
    N. Yamazoe, G. Sakai, K. Shimanoe, N.Y.Ã.G. Sakai, and K. Shimanoe, Oxide Semiconductor Gas Sensors, Cata. Surv. Asia, 2003, 7(1), p 63–75.  https://doi.org/10.1023/a:1023436725457 CrossRefGoogle Scholar
  33. 33.
    S. Pati, P. Banerji, and S.B. Majumder, MOCVD Grown ZnO Thin Film Gas Sensors: Influence of Microstructure, Sens. Actuators, A, 2014, 2014(213), p 52–58.  https://doi.org/10.1016/j.sna.2014.04.005 CrossRefGoogle Scholar
  34. 34.
    K. Mukherjee, D.C. Bharti, and S.B. Majumder, Solution Synthesis and Kinetic Analyses of the Gas Sensing Characteristics of Magnesium Ferrite Particles, Sensors Actuators B Chem., 2010, 146(1), p 91–97.  https://doi.org/10.1016/j.snb.2010.02.020 CrossRefGoogle Scholar
  35. 35.
    A. Ghosh and S.B. Majumder, Modeling the Sensing Characteristics of Chemi-Resistive Thin Film Semi-Conducting Gas Sensors, Phys. Chem. Chem. Phys. R. Soc. Chem., 2017, 19, p 23431–23443.  https://doi.org/10.1039/c7cp04241h CrossRefGoogle Scholar
  36. 36.
    K. Mukherjee and S.B. Majumder, Analyses of Response and Recovery Kinetics of Zinc Ferrite as Hydrogen Gas Sensor, J. Appl. Phys., 2009, 106(6), p 064912CrossRefGoogle Scholar
  37. 37.
    A. Maity, A. Ghosh, and S.B. Majumder, Engineered Spinel-Perovskite Composite Sensor for Selective Carbon Monoxide Gas Sensing, Sensors Actuators B Chem., 2016, 225(2), p 128–140.  https://doi.org/10.1016/j.snb.2015.11.025 CrossRefGoogle Scholar
  38. 38.
    K. Mukherjee, Gas Sensing Characteristics of Wet Chemical Sythesized Spinel Ferrites. Ph.D Dissertation, Indian Institute of Technology, Kharagpur, 2011.Google Scholar
  39. 39.
    A. Maity and S.B. Majumder, NO2 Sensing and Selectivity Characteristics of Tungsten Oxide Thin Films, Sensors Actuators B Chem., 2015, 206(2), p 423–429.  https://doi.org/10.1016/j.snb.2014.09.082 CrossRefGoogle Scholar
  40. 40.
    H.E. Endres, H.D. Jander, and W. Göttler, A Test System for Gas Sensors, Sensors and Actuators B Chem., 1995, 23(2–3), p 163–172CrossRefGoogle Scholar
  41. 41.
    S. Pati, A. Maity, P. Banerji, and S.B. Majumder, Qualitative and Quantitative Differentiation of Gases Using ZnO Thin Film Gas Sensors and Pattern Recognition Analysis, The Analyst, 2014, 139(7), p 1796.  https://doi.org/10.1039/c3an02021e CrossRefGoogle Scholar
  42. 42.
    T. Wagner, S. Haffer, C. Weinberger, D. Klaus, and M. Tiemann, Mesoporous Materials as Gas Sensors, Chem. Soc. Rev., 2013, 42(9), p 4036–4053CrossRefGoogle Scholar
  43. 43.
    I. Kocemba and J. Rynkowski, The Influence of Catalytic Activity on the Response of Pt/SnO2 Gas Sensors to Carbon Monoxide and Hydrogen, Sensors and Actuators B Chem., 2011, 155(2), p 659–666.  https://doi.org/10.1016/j.snb.2011.01.026 CrossRefGoogle Scholar
  44. 44.
    Y. Shimizu, T. Maekawa, Y. Nakamura, and M. Egashira, Effects of Gas Diffusivity and Reactivity on Sensing Properties of Thick Film SnO2 -Based Sensors 1, Sensors and Actuators B Chem., 1998, 46, p 163–168CrossRefGoogle Scholar
  45. 45.
    A. Mirzaei, S.G. Leonardi, and G. Neri, Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors: A Review, Ceram. Int., 2016, 42(14), p 15119–15141.  https://doi.org/10.1016/j.ceramint.2016.06.145 CrossRefGoogle Scholar
  46. 46.
    S. Pati, P. Banerji, and S.B. Majumder, N- to p- Type Carrier Reversal in Nanocrystalline Indium Doped ZnO Thin Film Gas Sensors, Int. J. Hydrogen Energy, 2014, 39(27), p 15134–15141.  https://doi.org/10.1016/j.ijhydene.2014.07.075 CrossRefGoogle Scholar
  47. 47.
    A. Ghosh and S.B. Majumder, Addressing the Selectivity Issue of Cobalt Doped Zinc Oxide Thin Film Iso-Butane Sensors: Conductance Transients and Principal Component Analyses, J. Appl. Phys., 2017, 122(3), p 034506CrossRefGoogle Scholar
  48. 48.
    K. Mukherjee and S.B. Majumder, Hydrogen Sensing Characteristics of Wet Chemical Synthesized Tailored Mg0.5Zn0.5Fe2O4 Nanostructures, Nanotechnology, 2010, 21(25), p 255504CrossRefGoogle Scholar
  49. 49.
    A. Ghosh, T. Schneller, R. Waser, and S.B. Majumder, Understanding on the Selective Carbon Monoxide Sensing Characteristics of Copper Oxide-Zinc Oxide Composite Thin Films, Sensors Actuators B Chem., 2017, 253, p 685–696.  https://doi.org/10.1016/j.snb.2017.06.154 CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • V. Ambardekar
    • 1
  • P. P. Bandyopadhyay
    • 1
    Email author
  • S. B. Majumder
    • 2
  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyKharagpurIndia
  2. 2.Materials Science Centre, Indian Institute of TechnologyKharagpurIndia

Personalised recommendations