Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 11, pp 6942–6957 | Cite as

Microstructural Characterization and Simulation of High Temperature Inelastic Deformation and Fracture of Al-Li 2070

  • A. StaroselskyEmail author
  • L. Borkowski
Article
  • 31 Downloads

Abstract

A combined experimental and simulation investigation is carried out to characterize the high temperature deformation behavior of a recently developed Al-Li alloy, AA2070, over a temperature range including typical forging temperatures. Focus is placed on providing explanations for the temperature-dependent plastic and fracture behavior observed for this material using macroscale tensile tests, microscale imaging and analysis, and physics-based micromechanical modeling. It is shown that AA2070 experiences non-monotonic elongation to failure with a rise in temperature. Detailed fractography and microstructural analysis, including dynamic recrystallization analysis, provide insight into this interesting and practically useful behavior. In addition, a validated crystal plasticity model is called upon to explain the unique texture observed in the necked region of the ductile tensile specimen. The insights provided by this investigation will allow improved design of high temperature forming operations for AA2070 and similar alloys which can extend the application of third generation Al-Li alloys.

Keywords

aluminum crystal plasticity crystallographic texture failure analysis microstructural evolution modeling and simulation recrystallization 

Notes

Acknowledgments

The authors are grateful for support and funding from Lightweight Innovations for Tomorrow (LIFT), operated by the American Lightweight Materials Manufacturing Innovation Institute (ALMMII). The contributions of and fruitful discussions with Dr. Thomas Watson from Pratt and Whitney and Dr. Tracy Berman from University of Michigan Ann Arbor are gratefully acknowledged.

References

  1. 1.
    N.E. Prasad, A. Gokhale, and R.J.H. Wanhill, Ed., Aluminum-Lithium Alloys: Processing, Properties, and Applications, Butterworth-Heinemann, Oxford, 2013Google Scholar
  2. 2.
    B.S. Adair, W.S. Johnson, S.D. Antolovich, and A. Staroselsky, Identification of Fatigue Crack Growth Mechanisms in IN100 Superalloy as a Function of Temperature and Frequency, Fatigue Fract. Eng. Mater. Struct., 2013, 36(3), p 217–227CrossRefGoogle Scholar
  3. 3.
    A. Staroselsky, T.J. Martin, and B. Cassenti, Transient Thermal Analysis and Viscoplastic Damage Model for Life Prediction of Turbine Components, J. Eng. Gas Turbines Power, 2015, 137(4), p 042501-1–042501-10CrossRefGoogle Scholar
  4. 4.
    A. Staroselsky, T.J. Martin, and L. Borkowski, The Influence of Thermal Transient Rates on Coated Turbine Parts’ Life Expectancy, J. Eng. Gas Turbines Power, 2019, 141(4), p 041034-1–041034-8CrossRefGoogle Scholar
  5. 5.
    A. Giummarra, B. Thomas, and R.J. Rioja, New Aluminum Lithium Alloys for Aerospace Applications, in Proceedings of the Light Metals Technology Conference, 2007, 2007.Google Scholar
  6. 6.
    T. Dubois, Pratt, Alcoa Pioneer Use of Aluminum Fan Blades, in Aviation International News, 2014. https://www.ainonline.com/aviation-news/air-transport/2014-07-28/pratt-alcoa-pioneer-use-aluminum-fan-blades#. Accessed 14 Jan 2019
  7. 7.
    P. Donnadieu, Y. Shao, F. De Geuser, G.A. Botton, S. Lazar, M. Cheynet, M. de Boissieu, and A. Deschamps, Atomic Structure of T1 Precipitates in Al-Li-Cu Alloys Revisited with HAADF-STEM Imaging and Small-angle X-ray Scattering, Acta Mater., 2011, 59, p 462–472CrossRefGoogle Scholar
  8. 8.
    C. Giummarra, B. Thomas, and R.J. Rioja, New Aluminum Lithium Alloys for Aerospace Applications, in Proceedings of the Light Metals Technology Conference, 2007, 2007Google Scholar
  9. 9.
    E.A. Ludwiczak and R.J. Rioja, Nucleation Sites of the T2 Phase in Alloy 2090, J. Mater. Sci., 1992, 27, p 4842CrossRefGoogle Scholar
  10. 10.
    A. Noble, S.J. Harris, and K. Dinsdale, The Elastic Modulus of Aluminium-Lithium Alloys, J. Mater. Sci., 1982, 17(2), p 461–468CrossRefGoogle Scholar
  11. 11.
    L. Borkowski, J.A. Sharon, and A. Staroselsky, In Situ Micromechanical Testing for Single Crystal Property Characterization, Metall. Mater. Trans. A, 2018, 49(12), p 6022–6033CrossRefGoogle Scholar
  12. 12.
    E.J. Lavernia, T.S. Srivatsan, and F.A. Mohamed, Strength, Deformation, Fracture Behaviour and Ductility of Aluminium-Lithium Alloys, J. Mater. Sci., 1990, 25(2), p 1137–1158CrossRefGoogle Scholar
  13. 13.
    R.J. Rioja and J. Liu, The Evolution of Al-Li Base Products for Aerospace and Space Applications, Metall. Mater. Trans. A, 2012, 43(9), p 3325–3337CrossRefGoogle Scholar
  14. 14.
    L.B. Borkowski and A. Staroselsky, Multiscale Model for Al-Li Material Processing Simulation Under Forging Conditions, in TMS Annual Meeting and Exhibition (Springer, Cham, 2018), p 355–364Google Scholar
  15. 15.
    M. Zhou, Y.C. Lin, J. Deng, and Y.Q. Jiang, Hot Tensile Deformation Behaviors and Constitutive Model of an Al-Zn-Mg-Cu Alloy, Mater. Des., 2014, 59, p 141–150CrossRefGoogle Scholar
  16. 16.
    A. Shi, W. Mao, and X.G. Chen, Evolution of Activation Energy During Hot Deformation of AA7150 Aluminum Alloy, Mater. Sci. Eng. A, 2013, 571, p 83–91CrossRefGoogle Scholar
  17. 17.
    D.C. Stouffer and L.T. Dame, Inelastic Deformation of Metals: Models, Mechanical Properties, and Metallurgy, Wiley, Hoboken, 1996Google Scholar
  18. 18.
    M. Liu, G. Yuan, Q. Wang, Y. Wei, W. Ding, and Y. Zhu, Superplastic Behavior and Microstructural Evolution in a Commercial Mg-3Al-1Zn Magnesium Alloy, Mater. Trans., 2002, 43(10), p 2433–2436CrossRefGoogle Scholar
  19. 19.
    M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H.R. Abedi, An Investigation into the Hot Deformation Characteristics of 7075 Aluminum Alloy, Mater. Des., 2011, 32(4), p 2339–2344CrossRefGoogle Scholar
  20. 20.
    Z.C. Sun, L.S. Zheng, and H. Yang, Softening Mechanism and Microstructure Evolution of As-Extruded 7075 Aluminum Alloy During Hot Deformation, Mater. Charact., 2014, 90, p 71–80CrossRefGoogle Scholar
  21. 21.
    C.E. Turner, Methods for Post-yield Fracture Safety Assessment in Post Yield Fracture Mechanics, Elsevier, New York, 1979, p 25–222Google Scholar
  22. 22.
    H.J. Frost and M.F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982Google Scholar
  23. 23.
    J.P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill Inc, New York, 1968Google Scholar
  24. 24.
    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E.W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238(2), p 219–274CrossRefGoogle Scholar
  25. 25.
    T. Berman and J. Allison, Processing for Assured Properties in Al-Li Forgings by Development and Validation of a Physics-Based Plastic Model, LIFT: TMP-R1-3b Final Report, 2018, Ch. 8Google Scholar
  26. 26.
    J.C. Tan and M.J. Tan, Dynamic Continuous Recrystallization Characteristics in Two Stage Deformation of Mg-3Al-1Zn Alloy Sheet, Mater. Sci. Eng. A, 2003, 339(1–2), p 124–132CrossRefGoogle Scholar
  27. 27.
    R. Raj and M.F. Ashby, On Grain Boundary Sliding and Diffusional Creep, Metall. Trans., 1971, 2(4), p 1113–1127CrossRefGoogle Scholar
  28. 28.
    X. Hu, G.A. Cingara, D.S. Wilkinson, M. Jain, P. Wu, and R.K. Mishra, Studies of Texture Gradients in the Localized Necking Band of AA 5754 by EBSD and Microstructure-Based Finite Element Modeling, Computers, Mater. Continua, 2010, 14(2), p 99–124Google Scholar
  29. 29.
    A. Staroselsky and B.N. Cassenti, Combined Rate-Independent Plasticity and Creep Model for Single Crystal, Mech. Mater., 2010, 42(10), p 945–959CrossRefGoogle Scholar
  30. 30.
    A. Staroselsky and B. Cassenti, Mechanisms for Tertiary Creep of Single Crystal Superalloy, Mech. Time Depend. Mater., 2008, 12(4), p 275–289CrossRefGoogle Scholar
  31. 31.
    S.C. Sutton, Characterization and Modeling of Lightweight Alloys in the Warm Forming Regime, Ph.D. Thesis, The Ohio State University, 2018Google Scholar
  32. 32.
    W. Pantleon, S. Richter, S. Martin, and J.R. Bowen, Texture Evolution During Tensile Necking of Copper Processed by Equal Channel Angular Extrusion, J. Phys. Conf. Ser., 2010, 240(1), p 012161CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.United Technologies Research CenterEast HartfordUSA

Personalised recommendations