Advertisement

Influence of Y-Rich Compounds on High-Cycle Fatigue Performance of Y-Doped M951 Superalloy

  • Pengjie ZhouEmail author
  • Dehang Song
  • Ning Liu
  • Nobufumi Ueshima
  • Katsunari Oikawa
Article
  • 37 Downloads

Abstract

The performance of Y-doped M951 superalloy under high-cycle fatigue was investigated experimentally to determine the effect of Y-rich compounds on this behavior. The selected testing temperatures were 700 and 900 °C, and the stress ratio was R = 0.1. The fatigue life was shown to decrease as the stress amplitude increased, according to a typical Whöler S-N diagram. Two types of crack initiation sites were observed on the fractured surfaces: microshrinkage clusters and Y-rich compounds. Analysis by TEM indicated that the Y-rich compounds consisted of Al2Ni6Y3 particles with BCC structure and Ni5Y particles with hexagonal structure. Cracks had initiated and propagated along the interface between Al2Ni6Y3 phase and the matrix. These Y-rich compounds varied considerably in size, from 1 to 769 μm, and the large-size Y-rich compounds were shown to be the preferred site for fatigue crack origin. The ability of Y in the removal of sulfur was considered. And the small-size Y-S product from the reaction between Y and S was shown to exhibit no deleterious effect on the fatigue property of the M951 Ni-based superalloy.

Keywords

casting and solidification failure analysis high-cycle fatigue superalloys yttrium 

Notes

Acknowledgment

This research was financially supported by the National Natural Science Foundation of China, No. 51471079, and Jiangsu Natural Science Foundation, BK20130464. The authors are also grateful for the financial support from the Jiangsu Government Scholarship for Oversea Studies.

References

  1. 1.
    L. Kunz, P. Lukáš, R. Konečná, and S. Fintová, Casting Defects and High Temperature Fatigue Life of IN 713LC Superalloy, Int. J. Fatigue, 2012, 41, p 47–51CrossRefGoogle Scholar
  2. 2.
    L. Kunz, P. Lukáš, and R. Konečná, High-Cycle Fatigue of Ni-Base Superalloy Inconel 713LC, Int. J. Fatigue, 2010, 32, p 908–913CrossRefGoogle Scholar
  3. 3.
    M. Šmíd, L. Kunz, P. Hutař, and K. Hrbáček, High Cycle Fatigue of Nickel-Based Superalloy MAR-M 247 at High Temperatures, Procedia Eng., 2014, 74, p 329–332CrossRefGoogle Scholar
  4. 4.
    D. Texier, J. Cormier, P. Villechaise, J.C. Stinville, C.J. Torbet, S. Pierret, and T.M. Pollock, Crack Initiation Sensitivity of Wrought Direct Aged Alloy 718 in the Very High Cycle Fatigue Regime: The Role of Non-metallic Inclusions, Mater. Sci. Eng. A, 2016, 678, p 122–136CrossRefGoogle Scholar
  5. 5.
    S. Sui, J. Chen, E.X. Fan, H.O. Yang, X. Lin, and W.D. Huang, The Influence of Laves Phases on the High-Cycle Fatigue Behavior of Laser Additive Manufactured Inconel 718, Mater. Sci. Eng. A, 2017, 695, p 6–13CrossRefGoogle Scholar
  6. 6.
    J.J. Yu, Z.W. Lian, Z.K. Chu, X.F. Sun, H.R. Guan, and Z.Q. Hu, Properties and Microstructures of M951 Alloy After Long-Term Exposure, Mater. Sci. Eng. A, 2010, 527, p 1896–1902CrossRefGoogle Scholar
  7. 7.
    Z.W. Lian, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu, Temperature Dependence of Tensile Behavior of Ni-Based Superalloy M951, Mater. Sci. Eng. A, 2008, 489, p 159–163CrossRefGoogle Scholar
  8. 8.
    P.J. Zhou, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu, The Role of Boron on a Conventional Nickel-Based Superalloy, Mater. Sci. Eng. A, 2008, 491, p 227–233Google Scholar
  9. 9.
    Y.H. Yang, J.J. Yu, X.F. Sun, T. Jin, and Z.Q. Hu, The Influence of Long-Term Thermal Exposure on Intermediate Temperature Brittleness Behavior of a Nickel-Base Superalloy, Mater. Charact., 2012, 66, p 30–37CrossRefGoogle Scholar
  10. 10.
    P.J. Zhou, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu, Role of Yttrium in the Microstructure and Mechanical Properties of a Boron-Modified Nickel-Based Superalloy, Scr. Mater., 2007, 57, p 643–646CrossRefGoogle Scholar
  11. 11.
    P.J. Zhou, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu, Influence of Y on Stress Rupture Property of a Ni-Based Superalloy, Mater. Sci. Eng. A, 2012, 551, p 236–240CrossRefGoogle Scholar
  12. 12.
    P.J. Zhou, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu, Roles of Zr and Y in Cast Microstructure of M951 Nickel-Based Superalloy, Trans. Nonferr. Met. Soc. China, 2012, 22, p 1594–1598CrossRefGoogle Scholar
  13. 13.
    R.M. Wang, Y.G. Song, and Y.F. Han, Effect of Rare Earth on the Microstructures and Properties of a Low Expansion Superalloy, J. Alloys. Compd., 2000, 311, p 60–64CrossRefGoogle Scholar
  14. 14.
    Z.X. Shi, S.Z. Liu, M. Han, and J.R. Li, Influence of Yttrium Addition on High Temperature Oxidation Resistance of Single Crystal Superalloy, J. Rare Earths, 2013, 31, p 795–799CrossRefGoogle Scholar
  15. 15.
    S.B. Shendye and D.A. Downham, Characterization of Ni-25 wt.% Cr Alloys Containing Reactive Elements and the Oxide Scales Grown on them at High Temperatures Using Transmission Electron Microscopy, Oxid. Met., 1995, 43, p 435–457CrossRefGoogle Scholar
  16. 16.
    E. Schumann, J.C. Yang, and M.J. Graham, Direct Observation of the Interaction of Yttrium and Sulfur in Oxidized NiAl, Scr. Mater., 1996, 34, p 1365–1370CrossRefGoogle Scholar
  17. 17.
    A.S. Khanna, C. Wasserfuhr, W.J. Quadakkers, and H. Nickel, Addition of Yttrium, Cerium and Hafnium to Combat the Deleterious Effect of Sulphur Impurity During Oxidation of an Ni-Cr-Al Alloy, Mater. Sci. Eng. A, 1989, 120–121, p 185–191CrossRefGoogle Scholar
  18. 18.
    B.G. Mendis, K.J.T. Livi, and K.J. Hemker, Observations of Reactive Element Gettering of Sulfur in Thermally Grown Oxide Pegs, Scr. Mater., 2006, 55, p 589–592CrossRefGoogle Scholar
  19. 19.
    L. Chen, X.C. Ma, L.M. Wang, and X.N. Ye, Effect of Rare Earth Element Yttrium Addition on Microstructures and Properties of a 21Cr-11Ni Austenitic Heat-Resistant Stainless Steel, Mater. Des., 2011, 32, p 2016–2022Google Scholar
  20. 20.
    Y.F. Han and C.B. Xiao, Effect of Yttrium on Microstructure and Properties of Ni3Al Base Alloy IC6, Intermetallics, 2000, 8, p 687–691CrossRefGoogle Scholar
  21. 21.
    F.C. Nunes, L.H. de Almeida, J. Dille, J.L. Delplancke, and I. Le May, Microstructural Changes Caused by Yttrium Addition to NbTi-Modified Centrifugally Cast HP-Type Stainless Steels, Mater. Charact., 2007, 58, p 132–142CrossRefGoogle Scholar
  22. 22.
    F.C. Nunes, J. Dille, J.L. Delplancke, and L.H. de Almeida, Yttrium Addition to Heat-Resistant Cast Stainless Steel, Scr. Mater., 2006, 54, p 1553–1556CrossRefGoogle Scholar
  23. 23.
    X.L. Li, S.M. He, X.T. Zhou, Y. Zou et al., Effects of Rare Earth Yttrium on Microstructure and Properties of Ni-16Mo-7Cr-4Fe Nickel-Based Superalloy, Mater. Charact., 2014, 95, p 171–179CrossRefGoogle Scholar
  24. 24.
    M. Marchionni, D. Goldschmidt, M. Maldini, High temperature mechanical property of CMSX4+Yttrium single-crystal Nickel-base superalloy, in Superalloy 1972, ed. by S.D. Antolovich, R.W. Stusrud, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom (TMS, 1992), pp. 775–784Google Scholar
  25. 25.
    W.J. Plumbridge, Review: Fatigue-Crack Propagation in Metallic and Polymeric Materials, J. Mater. Sci., 1972, 7, p 939–962CrossRefGoogle Scholar
  26. 26.
    P. Lukáš, in Fatigue crack initiation mechanisms, encyclopedia of materials: science and technology, 2nd ed., ed. by K.H.J. Buschow, R.W. Cahn, M.C. Fleming, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière (Elsevier, 2009), pp. 2882–2891Google Scholar
  27. 27.
    G. Chen, Y. Zhang, D.K. Xu, Y.C. Lin et al., Low Cycle Fatigue and Creep-Fatigue Interaction Behavior of Nickel-Base Superalloy GH4169 at Elevated Temperature of 650 °C, Mater. Sci. Eng. A, 2016, 655, p 175–182CrossRefGoogle Scholar
  28. 28.
    D.X. Wen, Y.C. Lin, J. Chen, X.M. Chen, J.L. Zhang, Y.J. Liang, and L.T. Li, Work-Hardening Behaviors of Typical Solution-Treated and Aged Ni-Based Superalloys During Hot Deformation, J. Alloys Compd., 2015, 618, p 372–379CrossRefGoogle Scholar
  29. 29.
    D.X. Wen, Y.C. Lin, and Y. Zhou, A New Dynamic Recrystallization Kinetics Model for a Nb Containing Ni-Fe-Cr-Base Superalloy Considering Influences of Initial δ Phase, Vacuum, 2017, 141, p 316–327CrossRefGoogle Scholar
  30. 30.
    X.M. Chen, Y.C. Lin, M.S. Chen, H.B. Li, D.X. Wen, J.L. Zhang, and M. He, Microstructural Evolution of a Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2015, 77, p 41–49CrossRefGoogle Scholar
  31. 31.
    Y.C. Lin, D.X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 59, p 115–123CrossRefGoogle Scholar
  32. 32.
    P. Lukáš, L. Kunz, and M. Svoboda, High-Temperature Ultra-High Cycle Fatigue Damage of Notched Single Crystal Superalloys at High Mean Stresses, Int. J. Fatigue, 2005, 27, p 1535–1540 (in English)CrossRefGoogle Scholar
  33. 33.
    M. Šmíd, P. Hutař, V. Horník, K. Hrbáček, and L. Kunz, Stage I, Fatigue Cracking in MAR-M 247 Superalloy at Elevated Temperatures, Procedia Struct. Integr., 2016, 2, p 3018–3025CrossRefGoogle Scholar
  34. 34.
    B. Larrouy, P. Villechaise, J. Cormier, and O. Berteaux, Grain Boundary-Slip Bands Interactions: Impact on the Fatigue Crack Initiation in a Polycrystalline Forged Ni-Based Superalloy, Acta Mater., 2015, 99, p 325–336CrossRefGoogle Scholar
  35. 35.
    I.S. Kim, B.G. Choi, J.E. Jung, J. Do, and C.Y. Jo, Effect of Microstructural Characteristics on the Low Cycle Fatigue Behaviors of Cast Ni-Base superalloys, Mater. Charact., 2015, 106, p 375–381CrossRefGoogle Scholar
  36. 36.
    P. Lukáš, L. Kunz, and M. Svoboda, High Cycle Fatigue of Superalloy Single Crystals at High Mean Stress, Mater. Sci. Eng. A, 2004, 387–389, p 387–389Google Scholar
  37. 37.
    P. Lukáš and L. Kunz, Cyclic Slip Localisation and Fatigue Crack Initiation in fcc Single Crystals, Mater. Sci. Eng. A, 2001, 314, p 75–80CrossRefGoogle Scholar
  38. 38.
    D. Kulawinski, S. Henkel, D. Holländer, M. Thiele, U. Gampe, and H. Biermann, Fatigue Behavior of the Nickel-Base Superalloy Waspaloy™ Under Proportional Biaxial-Planar Loading at High Temperature, Int. J. Fatigue, 2014, 67, p 212–219CrossRefGoogle Scholar
  39. 39.
    G.J. Deng, S.T. Tu, X.C. Zhang, J. Wang, C.C. Zhang, X.Y. Qian, and Y.N. Wang, Small Fatigue Crack Initiation and Growth Mechanisms of Nickel-Based Superalloy GH4169 at 650 °C in air, Eng. Fract. Mech., 2016, 163, p 35–49CrossRefGoogle Scholar
  40. 40.
    M. Venkatraman and H. Newmann, S-Y (Sulfur-Yttrium), Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Ed., ASM International, Materials Park, 1990, p 3295Google Scholar
  41. 41.
    M. Singleton, P. Nash, and K.J. Lee, Ni-S(Nickel-Sulfur), Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Ed., ASM International, Materials Park, 1990, p 2850–2853Google Scholar
  42. 42.
    H.S. Ho, M. Risbet, and X. Feaugas, A Cyclic Slip Irreversibility Based Model for Fatigue Crack Initiation of Nickel Base Alloys, Int. J. Fatigue, 2017, 102, p 1–8CrossRefGoogle Scholar
  43. 43.
    K. Harris, J.B. Wahl, Improved single crystal superalloy, CMSX-4(SLS)[La+Y] and CMSX-486R, in Superalloy 2004 (Champion, PA, USA), ed. by K.A. Green, T.M. Pollock, H. Harada, (TMS, 2004), pp. 45–52Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Jiangsu University of Science and TechnologyZhenjiangChina
  2. 2.Department of Metallurgy, Graduate School of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations