Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 11, pp 6827–6835 | Cite as

Effects of Postweld Heat Treatment on Microstructure and Properties of Laser-Welded Ti-24Al-15Nb Alloy Joint

  • Lin Wang
  • Daqian Sun
  • Hongmei LiEmail author
  • Chengjie Shen
Article
  • 48 Downloads

Abstract

The microstructure evolution and mechanical properties of laser-welded joints of Ti-24Al-15Nb alloy under different postweld heat treatment (PWHT) conditions were systematically investigated. The results show that the microstructure is very sensitive to PWHT temperatures. The weld zone consists of B2 and O phases after PWHT. With the PWHT temperatures increasing from 850 to 1000 °C, the amount of O phase decreases gradually, while the grains of O precipitates become coarser. After PWHT, there are some thin acicular O precipitates in heat-affected zone (HAZ), and the decomposition of α2-phase caused by niobium diffusion can be observed in the HAZ. The PWHT can significantly increase the microhardness of joints, resulting from O phase precipitation hardening effect. The tensile strength and elongation of joints can be remarkably improved after PWHT, which was closely related to the strengthening effect of O precipitates and slip transmission between O and B2 phases. In addition, the results indicate that the best mechanical properties can be achieved only when the number and size of O phase and B2 phase are the best match.

Keywords

laser beam welding mechanical properties microstructure postweld heat treatment Ti-24Al-15Nb alloy 

Notes

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China for financial support (51805205). And the work was also supported by “13th Five-Year” Science and Technology Project of Education Department of Jilin Province, China (No. JJKH20180126KJ) and Science and Technology Planning Project of Jilin Province, China (No. 20181312034ZG).They would also like to thank teacher Liu Guojun from Jilin University for his assistance in this experiment.

References

  1. 1.
    A. Beranoagirre, G. Urbikain, A. Calleja, and L.N. López de Lacalle, Drilling Process in γ-TiAl Intermetallic Alloys, Materials, 2018, 11, p 2379CrossRefGoogle Scholar
  2. 2.
    P. Lin, Z. He, S. Yuan, J. Shen, Y. Huang, and X. Liang, Instability of the O-Phase in Ti-22Al-25Nb Alloy During Elevated-Temperature Deformation, J. Alloys Compd., 2013, 578, p 96–102CrossRefGoogle Scholar
  3. 3.
    S.R. Dey, S. Roy, S. Suwas, J.J. Fundenberger, and R.K. Ray, Annealing Response of the Intermetallic Alloy Ti-22Al-25Nb, Intermetallics, 2010, 18, p p0–1131CrossRefGoogle Scholar
  4. 4.
    S.R. Dey, S. Suwas, J.J. Fundenberger, and R.K. Ray, Evolution of Crystallographic Texture and Microstructure in the Orthorhombic Phase of a Two-Phase Alloy Ti-22Al-25Nb, Intermetallics, 2009, 17, p 622–633CrossRefGoogle Scholar
  5. 5.
    S. Djanarthany, J.C. Viala, and J. Bouix, An Overview of Monolithic Titanium Aluminides Based on Ti3Al and TiAl, Mater. Chem. Phys., 2001, 72, p 301–319CrossRefGoogle Scholar
  6. 6.
    S.J. Yang, S.W. Nam, and M. Hagiwara, Investigation of Creep Deformation Mechanisms and Environmental Effects on Creep Resistance in a Ti2AlNb Based Intermetallic Alloy, Intermetallics, 2004, 12, p 261–274CrossRefGoogle Scholar
  7. 7.
    C. Wang, T. Zhao, G. Wang, J. Gao, and H. Fang, Superplastic Forming and Diffusion Bonding of Ti-22Al-24Nb Alloy, J. Mater. Process. Technol., 2015, 222, p 122–127CrossRefGoogle Scholar
  8. 8.
    X. Chen, F. Xie, T. Ma, W. Li, and X. Wu, Microstructure Evolution and Mechanical Properties of Linear Friction Welded Ti2AlNb Alloy, J. Alloys Compd., 2015, 646, p 490–496CrossRefGoogle Scholar
  9. 9.
    P. He, J.C. Feng, and H. Zhou, Microstructure and Strength of Brazed Joints of Ti3Al Base Alloy with AgCuZn Filler Metal, Mater. Charact., 2005, 21, p 445–450Google Scholar
  10. 10.
    J.C. Feng, H.Q. Wu, J.S. He, and B. Zhang, Microstructure Evolution of Electron Beam Welded Ti3Al-Nb Joint, Mater. Charact., 2005, 54, p 99–105CrossRefGoogle Scholar
  11. 11.
    I. Burkhardt, V. Ventzke, S. Riekehr, N. Kashaev, and J. Enz, Laser Welding and Microstructural Characterization of Dissimilar γ-TiAl-Ti6242 Joints, Intermetallics, 2019, 104, p 74–83CrossRefGoogle Scholar
  12. 12.
    H. Zhang, X. Zhao, D. Xu, Y. Liu, and X. Qiu, New Insight Into High Frequency Impacting and Rolling of 2A12 Aluminum Welded Joint Involving Nanocrystallization, Appl. Surf. Sci., 2019, 488, p 115–127CrossRefGoogle Scholar
  13. 13.
    C. Kumar, M. Das, C.P. Paul, and K.S. Bindra, Weld Quality Assessment in Fiber Laser Weldments of Ti-6Al-4 V Alloy, J. Mater. Eng. Perform., 2019, 28, p 3048–3062CrossRefGoogle Scholar
  14. 14.
    A. Calleja, I. Tabernero, A. Fernández, A. Celaya, A. Lamikiz, and L.N. López de Lacalle, Improvement of Strategies and Parameters for Multi-axis Laser Cladding Operations, Opt. Lasers Eng., 2014, 56, p 113–120CrossRefGoogle Scholar
  15. 15.
    G. Martin, C. Albright, and T. Jones, An Evaluation of CO2 Laser Beam Welding on a Ti3Al-Nb Alloy, Weld. J., 1995, 74, p 99–105Google Scholar
  16. 16.
    G. Wang, A. Wu, G. Zou, Y. Zhao, Q. Chen, and J. Ren, Bending Properties and Fracture Behavior of Ti-23Al-17Nb Alloy Laser Beam Welding Joints, Tsinghua Sci. Technol., 2009, 14, p 293–299CrossRefGoogle Scholar
  17. 17.
    M.J. Cieslak, T.J. Headley, and W.A. Baeslack, Effect of Thermal Processing on the Microstructure of Ti-26Al-11Nb: Applications to Fusion Welding, Metall. Trans. A, 1990, 21, p 1273–1286CrossRefGoogle Scholar
  18. 18.
    A. Wu, G. Zou, J. Ren, H. Zhang, G. Wang, and X. Liu, Microstructures and Mechanical Properties of Ti-24Al-17Nb Laser Beam Welding Joints, Intermetallics, 2002, 10, p 647–652CrossRefGoogle Scholar
  19. 19.
    W. Baeslackiii, M.J. Cieslak, and T.J. Headley, Structure, Properties and Fracture of Pulsed Nd:YAG Laser Welded Ti14. 8 wt%Al21. 3 wt%Nb Titanium Aluminide, Scr. Metall., 1988, 22, p 1155–1160CrossRefGoogle Scholar
  20. 20.
    Y. Chen, K. Zhang, and X. Hu, Study on Laser Welding of a Ti-22Al-25Nb Alloy: Microstructural Evolution and High Temperature Brittle Behavior, J. Alloys Compd., 2016, 68, p 175–185CrossRefGoogle Scholar
  21. 21.
    B.B. Kong, G. Liu, D.J. Wang, K.H. Wang, and S.J. Yuan, Microstructural Investigations for Laser Welded Joints of Ti-22Al-25Nb Alloy Sheets Upon Large Deformation at Elevated Temperature, Mater. Des., 2016, 90, p 723–732CrossRefGoogle Scholar
  22. 22.
    L. Wang, D.Q. Sun, H.M. Li, X.Y. Gu, and C.J. Shen, Microstructures and Mechanical Properties of a Laser-Welded Joint of Ti3Al-Nb Alloy Using Pure Nb Filler Metal, Metals, 2018, 8, p 785CrossRefGoogle Scholar
  23. 23.
    D.M. Krahmer, R. Polvorosa, L.N. López de Lacalle, U. Alonso-Pinillos, G. Abate, and F. Riu, Alternatives for Specimen Manufacturing in Tensile Testing of Steel Plates, Exp. Tech., 2016, 40, p 1555–1565CrossRefGoogle Scholar
  24. 24.
    S.A. David, J.A. Horton, G.M. Goodwin, D.H. Phillips, and R.W. Reed, Weldability and Microstructure of a Titanium Aluminide, Weld. J., 1990, 69, p 133–140Google Scholar
  25. 25.
    X. Chen, F.Q. Xie, T.J. Ma, W.Y. Li, and X.Q. Wu, Microstructural Evolution and Mechanical Properties of Linear Friction Welded Ti2AlNb Joint During Solution and Aging Treatment, Mater. Sci. Eng. A, 2016, 668, p 125–136CrossRefGoogle Scholar
  26. 26.
    K. Muraleedharan, T.K. Nandy, and D. Banerjee, Transformations in a Ti-24Al-15Nb Alloy: Part II. A Composition Invariant β → O Transformation, Metall. Trans. A, 1992, 23, p 417–431CrossRefGoogle Scholar
  27. 27.
    K. Muraleedharan, D. Banerjee, S. Banerjee, and S. Lele, The α2-to-O Transformation in Ti-Al-Nb Alloys, Philos. Mag. A, 1995, 71, p 1011–1136CrossRefGoogle Scholar
  28. 28.
    Y. Wu and S.K. Hwang, The Effect of Aging on Microstructure of the O-Phase in Ti-24Al-14Nb-3V-0.5Mo Alloy, Mater. Lett., 2001, 49, p 131–136CrossRefGoogle Scholar
  29. 29.
    D. Banerjee, A.K. Gogia, and T.K. Nandy, Deformation Structure in a Ti-24Al-11Nb Alloy, Metall. Trans. A, 1990, 21, p 627–639CrossRefGoogle Scholar
  30. 30.
    W. Wang, W.D. Zeng, C. Xue, X.B. Liang, and J.W. Zhang, Designed Bimodal Size Lamellar o Microstructures in Ti2AlNb Based Alloy: Microstructural Evolution, Tensile and Creep Properties, Mater. Sci. Eng. A, 2014, 618, p 288–294CrossRefGoogle Scholar
  31. 31.
    A. Oscar, A. Nelson, and E. Hernández, The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints Under Cyclic Tensile Loading, Materials, 2018, 11, p 594CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Lin Wang
    • 1
  • Daqian Sun
    • 1
  • Hongmei Li
    • 1
    Email author
  • Chengjie Shen
    • 1
  1. 1.Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations