Mg-3Zn/HA Biodegradable Composites Synthesized via Spark Plasma Sintering for Temporary Orthopedic Implants

  • Anshu Dubey
  • Satish Jaiswal
  • Swati Haldar
  • Partha Roy
  • Debrupa LahiriEmail author


In the present study, an attempt has been made to improve the mechanical properties, biocompatibility and degradation rate of Mg/3Zn matrix composite, by reinforcing with chemically inert and osteoconductive hydroxyapatite (HA). The composites were synthesized through spark plasma sintering for better consolidation. The HA content, in Mg/3Zn matrix, was optimized with an aim of improving mechanical behavior, corrosion resistance and biocompatibility simultaneously. It has been observed that reinforcement with 15 wt.% HA could slow down the corrosion rate by ~ 60% and improve the hardness and compression strength by ~ 42.8 and 18%, respectively. In vitro studies, up to 56 days, unveil the effect of HA reinforcement in corrosion resistance of magnesium-based matrix. Osteoblastic activity has shown better cell proliferation on the composite surfaces, which were reinforced with HA.


biodegradable hydroxyapatite in vitro corrosion magnesium orthopedic applications spark plasma sintering 



DL acknowledges the financial support for funding by DST, India (SB/SO/HS/138/2013). Authors would also like to thank Department of Metallurgical and Materials Engineering, IIT Roorkee for maintaining experimental facilities. The authors would also like to acknowledge Dr. Naibedya Chattopadhyay of Central drug research institute (CDRI), India, for the Human Fetal Osteoblast Progenitor (hFOB) cell line. Thanks are extended to Mr. R Manoj Kumar and Ms. Ankita Bisht, research scholars in the Department of Metallurgical and Materials Engineering, IIT Roorkee, for their technical assistance during experiments. Authors are grateful to the laboratory staff of the Department of Biotechnology, IIT Roorkee, for cell culture facilities.


  1. 1.
    M. Saini, Y. Singh, P. Arora, V. Arora, and K. Jain, Implant Biomaterials: A Comprehensive Review 3, World J. Clin. Cases, 2015, 3, p 52-57 (in Englsih)CrossRefGoogle Scholar
  2. 2.
    N.A. Llah, S. Jamaludin, Z. Daud, M. Zaludin, Mg-Zn Based Composites Reinforced with Bioactive Glass (45S5) Fabricated via Powder Metallurgy, in AIP Conference Proceedings, The 2nd International Conference on Functional Materials and Metallurgy, vol. 1756, 2016, p 1-7Google Scholar
  3. 3.
    L. Mao, L. Shen, J. Chen, X. Zhang, M. Kwak, Y. Wu, R. Fan, and W. Ding, A Promising Biodegradable Magnesium Alloy Suitable for Clinical Vascular Stent Application, Nat. Sci. Rep., 2017, 7, p 46343CrossRefGoogle Scholar
  4. 4.
    M. Haghshenas, Mechanical Characteristics of Biodegradable Magnesium Matrix Composites: A Review, J. Magn. Alloys, 2017, 5, p 189-201CrossRefGoogle Scholar
  5. 5.
    M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728-1734CrossRefGoogle Scholar
  6. 6.
    S. Nayak, B. Bhushan, R. Jayaganthan, P. Gopinath, R.D. Agarwal, and D. Lahiri, Strengthening of Mg Based Alloy Through Grain Refinement for Orthopedic Application, J. Mech. Behav. Biomed. Mater., 2015, 59, p 57-70CrossRefGoogle Scholar
  7. 7.
    G.L. Song and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837-858CrossRefGoogle Scholar
  8. 8.
    Y.F. Zheng, X.N. Gu, and F. Witte, Biodegradable Metals, Mater. Sci. Eng. R, 2014, 77, p 1-34CrossRefGoogle Scholar
  9. 9.
    Z.G. Huan, M.A. Leeflang, J. Zhou, L.E. Fratila-Apachitei, and J. Duszczyk, In vitro Degradation Behavior and Cytocompatibility of Mg-Zn-Zr Alloys, J. Mater. Sci. Mater. Med., 2010, 21, p 2623-2635CrossRefGoogle Scholar
  10. 10.
    D. Liu, M. Chen, and X. Ye, Fabrication and Corrosion Behavior of HA/Mg-Zn Biocomposites, Front. Mater. Sci. Chin., 2010, 4, p 139-144CrossRefGoogle Scholar
  11. 11.
    J. Cheng Gao, S. Wu, L. Ying Qiao, and Y. Wang, Corrosion Behavior of Mg and Mg-Zn Alloys in Simulated Body Fluid, Trans. Nonferr. Met. Soc. China, 2008, 18, p 588-592CrossRefGoogle Scholar
  12. 12.
    J. Foltz and C. Blackmon, Metal Matrix Composites, Adv. Mater. Process., 1998, 154, p 19-23Google Scholar
  13. 13.
    B. Landkof, Development of High Strength Magnesium Based MMC Reinforced with SiC Particles for Satellite Structure Applications, Material wissenschaft and Werkstofftechnik, 2003, 34, p 395-399CrossRefGoogle Scholar
  14. 14.
    F. Witte, F. Feyerabend, P. Maier, and J. Fischer, Biodegradable Magnesium-Hydroxyapatite Metal Matrix Composites, Biomaterials, 2007, 28, p 2163-2174CrossRefGoogle Scholar
  15. 15.
    A. Han and Y. Feng, The Microstructure, Mechanical and Corrosion Properties of Calcium Polyphosphate Reinforced ZK60A Magnesium Alloy Composites, J. Alloys Compd., 2010, 504, p 585-593CrossRefGoogle Scholar
  16. 16.
    Y. Han and A. Feng, Mechanical and In Vitro Degradation Behavior of Ultrafine Calcium Polyphosphate Reinforced Magnesium-Alloy Composites, Mater. Des., 2011, 32, p 2813-2820CrossRefGoogle Scholar
  17. 17.
    M. Razavi, M.H. Fathi, and M. Meratian, Microstructure, Mechanical Properties and Bio-corrosion Evaluation of Biodegradable AZ91-FA Nanocomposites for Biomedical Applications, Mater. Sci. Eng. A, 2010, 527, p 6938-6944CrossRefGoogle Scholar
  18. 18.
    X. Gu, W. Zhou, Y. Feng, Z. Limin, D. Xi, and D. Chai, Microstructure, Mechanical Property, Bio-corrosion and Cytotoxicity Evaluations of Mg/HA Composites, Mater. Sci. Eng. C, 2010, 30, p 827-832CrossRefGoogle Scholar
  19. 19.
    Z.G. Huan, M.A. Leeflang, J. Zhou, and J. Duszczyk, ZK30-Bioactive Glass Composites for Orthopedic Applications: A Comparative Study on Fabrication Method and Characteristics, Mater. Sci. Eng. B, 2011, 176, p 1644-1652CrossRefGoogle Scholar
  20. 20.
    T. Lei, W. Tang, S. Cai, F. Feng, and N. Liab, On the Corrosion Behaviour of Newly Developed Biodegradable Mg-Based Metal Matrix Composites Produced by In Situ Reaction, Corros. Sci., 2012, 54, p 270-277CrossRefGoogle Scholar
  21. 21.
    Y.F. Zheng, X.N. Gua, Y.L. Xib, and D.L. Chai, In Vitro Degradation and Cytotoxicity of Mg/Ca Composites Produced by Powder Metallurgy, Acta Biomater., 2010, 6, p 1783-1791CrossRefGoogle Scholar
  22. 22.
    A. Khanra, H. Chul, J. Kug, S. Kwang, and S. Shinb, Comparative Property Study on Extruded Mg-HAP and ZM61-HAP Composites, Mater. Sci. Eng. A, 2014, 527, p 6283-6288CrossRefGoogle Scholar
  23. 23.
    B. Chen, K. Yin, T. Lu, B. Sun, Q. Dong, J. Zheng, C. Lu, and Z. ChunLi, AZ91 Magnesium Alloy/Porous Hydroxyapatite Composite for Potential Application in Bone Repair, J. Mater. Sci. Technol., 2016, 32, p 858-864CrossRefGoogle Scholar
  24. 24.
    B.R. Sunil, T.S. Kumar, U. Chakkingal, V. Nandakumar, and M. Doble, Friction Stir Processing of Magnesium-Nanohydroxyapatite Composites with Controlled In Vitro Degradation Behavior, Mater. Sci. Eng. C, 2014, 39, p 315-324CrossRefGoogle Scholar
  25. 25.
    A. Rahman, Neuropathology of Aluminum Toxicity in Rats (Glutamate and GABA Impairment), Pharmacol. Res., 2003, 47, p 189-194CrossRefGoogle Scholar
  26. 26.
    C. Shuai, Y. Zhou, Y. Yang, P. Feng, L. Liu, C. He, M. Zhao, S. Yang, C. Gao, and P. Wu, Biodegradation Resistance and Bioactivity of Hydroxyapatite Enhanced Mg-Zn Composites via Selective Laser Melting, Material, 2017, 10, p 307-314CrossRefGoogle Scholar
  27. 27.
    X. Ye, M. Chen, M. Yang, J. Wei, and D. Liu, In Vitro Corrosion Resistance and Cytocompatibility of Nano-hydroxyapatite Reinforced Mg-Zn-Zr Composites, J. Mater. Sci. Mater. Med., 2010, 21, p 1321-1328CrossRefGoogle Scholar
  28. 28.
    S. Pal, Design of Artificial Human Joints & Organs, Springer US, 2014, p 23-40Google Scholar
  29. 29.
    L. Debao, G. Xu, S.S. Jamali, Y. Zhao, M. Chen, and T. Jurak, Fabrication of Biodegradable HA/Mg-Zn-Ca Composites and the Impact of Heterogeneous Microstructure on Mechanical Properties, In Vitro Degradation and Cytocompatibility, Bioelectrochemistry, 2019, 129, p 106-115CrossRefGoogle Scholar
  30. 30.
    R.D. Campo, B. Savoini, and G. Garcés, Mechanical Properties and Corrosion Behavior of Mg-HAP Composites, J. Mech. Behav. Biomed. Mater., 2014, 39, p 238-246CrossRefGoogle Scholar
  31. 31.
    S. Jaiswal, M. Kumara, P. Gupta, M. Kumaraswamy, P. Roy, and D. Lahiri, Mechanical, Corrosion and Biocompatibility Behaviour of Mg-3Zn-HA Biodegradable Composites for Orthopaedic Fixture Accessories, J. Mech. Behav. Biomed. Mater., 2018, 78, p 442-454CrossRefGoogle Scholar
  32. 32.
    B. Ratna Sunil, C. Ganapathy, T. Sampath Kumar, and U. Chakkingal, Processing and Mechanical Behavior of Lamellar Structured Degradable Magnesium-Hydroxyapatite Implants, J. Mech. Behav. Biomed. Mater., 2014, 40, p 178-189CrossRefGoogle Scholar
  33. 33.
    C. Zeqin, W. Li, L. Cheng, D. Gong, W. Cheng, and W. Wang, Effect of Nano-HA Content on the Mechanical Properties, Degradation and Biocompatible Behavior of Mg-Zn/HA Composite Prepared by Spark Plasma Sintering, Mater. Character., 2019, 151, p 620-631CrossRefGoogle Scholar
  34. 34.
    S. Singh, R.M. Kumar, K.K. Kuntal, P. Gupta, S. Das, R. Jayaganthan, P. Roy, and D. Lahiri, Sol-Gel Derived Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopedic Application, J. Miner. Met. Mater. Soc., 2015, 67, p 702-712CrossRefGoogle Scholar
  35. 35.
    Z. Zhen, T.F. Xi, and Y.F. Zheng, A Review on In Vitro Corrosion Performance Test of Biodegradable Metallic Materials, Trans. Nonferr. Met. Soc. China, 2013, 23, p 2283-2293CrossRefGoogle Scholar
  36. 36.
    A. Purwar, R. Mukherjee, K. Ravikumar, S. Ariharan, and B. Basu, Development of ZrB2-SiC-Ti by Multi Stage Spark Plasma Sintering at 1600 °C, J. Ceram. Soc. Jpn., 2016, 124, p 393-402CrossRefGoogle Scholar
  37. 37.
    S.S. Sib and J.W. Barlow, Measurement and Prediction of Thermal Conductivity of Powdersat High Temperatures, The University of Texas at Austin, Texas, 1994, p 321-329Google Scholar
  38. 38.
    H. Waizy, J.M. Seitz, J. Reifenrath, A. Weizbauer, F.W. Bach, A.M. Lindenberg, B. Denkena, and H. Windhagen, Biodegradable Magnesium Implants for Orthopedic Applications. J. Mater. Sci., 2013, 48, p 39–50Google Scholar
  39. 39.
    D.R. Muthupandi, N. Viswanathan, S. Rameshbabu, and V. Kennedy, Plasma Electrolytic Oxidation and Characterization of Spark Plasma Sintered Magnesium/Hydroxyapatite Composites, Mater. Sci. Forum, 2013, 765, p 827-831CrossRefGoogle Scholar
  40. 40.
    R.M. Kumar, K.K. Kuntal, S. Singh, P. Gupta, B. Bhushan, P. Gopinath, and D. Lahiri, Electrophoretic Deposition of Hydroxyapaptite Coating on Mg-3Zn Alloy for Orthopedic Applicatin, Surf. Coat. Technol., 2016, 287, p 82-92CrossRefGoogle Scholar
  41. 41.
    Z. Huan, C. Xu, B. Ma, J. Zhou, and J. Chang, Substantial Enhancement of Corrosion Resistance and Bioactivity of Magnesium by Incorporating Calcium Silicate Particles, RSC Adv., 2016, 6, p 47897-47906CrossRefGoogle Scholar
  42. 42.
    L. Feller, Y. Jadwat, R.A. Khammissa, A.R. Meyerov, I. Schechter, and J. Lemmer, Cellular Responses Evoked by Different Surface Characteristics of Intraosseous Titanium Implants, Biomed. Res. Int., 2015, 2015, p 17194CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Anshu Dubey
    • 1
  • Satish Jaiswal
    • 1
  • Swati Haldar
    • 2
  • Partha Roy
    • 2
    • 3
  • Debrupa Lahiri
    • 1
    • 2
    Email author
  1. 1.Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Centre for NanotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia
  3. 3.Department of BiotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations