Advertisement

Thermal and Oxidation Behavior of CoCrFeMnNi Alloy with and Without Yttrium Oxide Particle Dispersion

  • Monika VilémováEmail author
  • Ksenia Illková
  • Štefan Csáki
  • František Lukáč
  • Hynek Hadraba
  • Jiří Matějíček
  • Zdeněk Chlup
  • Jakub Klečka
Article
  • 27 Downloads

Abstract

The equiatomic CoCrFeMnNi alloy is currently one of the most studied high-entropy alloys. In our previous work, a new grade of CoCrFeMnNi high-entropy alloy with yttria-based particle dispersion was introduced showing improved mechanical properties, especially high-temperature strength and creep rate. In this study, a detailed analysis of room to high-temperature thermal properties was performed, as it is important for defining the future application of the alloy and opening the discussion on tailoring the thermal response. Thermal properties are not well known for the original CoCrFeMnNi alloy or for CoCrFeMnNi with yttria dispersion. As a result of the analysis, thermal properties of both alloys and the effect of the oxide dispersion are discussed. Most of the thermal properties remain unchanged. However, it was found that the presence of 0.3% yttria influences the oxidation rate of CoCrFeMnNi alloy at the initial and intermediate oxidation times. The onset of the oxidation is described in detail. Yttria nano-oxide dispersion and related grain refinement also reduce the microstructural degradation caused by the formation of voids due to outward Mn diffusion.

Keywords

high-entropy alloys oxidation particle dispersion thermal conductivity thermal expansion thermal properties 

Notes

Acknowledgments

This work was financially supported by Czech Science Foundation through project no. 17-23964S and partially supported by the Czech Academy of Sciences within the New materials program of the Strategy AV21. The authors would like to acknowledge prof. RNDr. Antonín Dlouhý, CSc. for TEM analysis and Ing. Pavla Roupcová, Ph.D. for XRD analysis.

References

  1. 1.
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377(1–2 SPEC. ISS.), p 213–218.  https://doi.org/10.1016/j.msea.2003.10.257 CrossRefGoogle Scholar
  2. 2.
    B. Wang, A. Fu, X. Huang, B. Liu, Y. Liu, Z. Li, and X. Zan, Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy under High Strain Rate Compression, J. Mater. Eng. Perform., 2016,  https://doi.org/10.1007/s11665-016-2105-5 Google Scholar
  3. 3.
    J.J. Licavoli, M.C. Gao, J.S. Sears, P.D. Jablonski, and J.A. Hawk, Microstructure and Mechanical Behavior of High-Entropy Alloys, J. Mater. Eng. Perform., 2015,  https://doi.org/10.1007/s11665-015-1679-7 Google Scholar
  4. 4.
    F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61(15), p 5743–5755.  https://doi.org/10.1016/j.actamat.2013.06.018 CrossRefGoogle Scholar
  5. 5.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158.  https://doi.org/10.1126/science.1254581 CrossRefGoogle Scholar
  6. 6.
    H. Hadraba, Z. Chlup, A. Dlouhy, F. Dobes, P. Roupcova, M. Vilemova, and J. Matejicek, Oxide Dispersion Strengthened CoCrFeNiMn High-Entropy Alloy, Mater. Sci. Eng. A, 2017, 689, p 252–256.  https://doi.org/10.1016/j.msea.2017.02.068 CrossRefGoogle Scholar
  7. 7.
    M. Caro, L.K. Béland, G.D. Samolyuk, R.E. Stoller, and A. Caro, Lattice Thermal Conductivity of Multi-component Alloys, J. Alloys Compd., 2015, 648, p 408–413.  https://doi.org/10.1016/j.jallcom.2015.06.035 CrossRefGoogle Scholar
  8. 8.
    G.R. Holcomb, J. Tylczak, and C. Carney, Oxidation of CoCrFeMnNi High Entropy Alloys, JOM, 2015, 67(10), p 2326–2339.  https://doi.org/10.1007/s11837-015-1517-2 CrossRefGoogle Scholar
  9. 9.
    W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, and J.J. Kai, The Oxidation Behavior of an Equimolar FeCoNiCrMn High-Entropy Alloy at 950 °C in Various Oxygen-Containing Atmospheres, Corros. Sci., 2016, 108, p 209–214.  https://doi.org/10.1016/j.corsci.2016.03.020 CrossRefGoogle Scholar
  10. 10.
    G. Laplanche, U.F. Volkert, G. Eggeler, and E.P. George, Oxidation Behavior of the CrMnFeCoNi High-Entropy Alloy, Oxid. Metals, 2016, 85(5–6), p 629–645.  https://doi.org/10.1007/s11085-016-9616-1 CrossRefGoogle Scholar
  11. 11.
    G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, and E.P. George, Temperature Dependencies of the Elastic Moduli and Thermal Expansion Coefficient of an Equiatomic, Single-Phase CoCrFeMnNi High-Entropy Alloy, J. Alloys Compd., 2015, 623, p 348–353.  https://doi.org/10.1016/j.jallcom.2014.11.061 CrossRefGoogle Scholar
  12. 12.
    H.M. Rietveld, Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement, Acta Crystallogr. A, 1967, 22(1), p 151–152.  https://doi.org/10.1107/s0365110x67000234 CrossRefGoogle Scholar
  13. 13.
    A.A. Coelho, TOPAS Version 5 (Computer Software), 2016Google Scholar
  14. 14.
    M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, and Y. Champion, Insights into the Phase Diagram of the CrMnFeCoNi High Entropy Alloy, Acta Mater., 2015, 88, p 355–365.  https://doi.org/10.1016/j.actamat.2015.01.068 CrossRefGoogle Scholar
  15. 15.
    Z.M. Xie, R. Liu, S. Miao, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, and G.N. Luo, Effect of High Temperature Swaging and Annealing on the Mechanical Properties and Thermal Conductivity of W-Y2O3, J. Nucl. Mater., 2015, 464, p 193–199.  https://doi.org/10.1016/j.jnucmat.2015.04.050 CrossRefGoogle Scholar
  16. 16.
    Z. Jirák, S. Vratislav, and P. Novák, Study of Cubic and Tetragonal Structures in the System MnXCr3-xO4, Physica Status Solidi (a), 1978, 50(1), p K21–K24.  https://doi.org/10.1002/pssa.2210500148 CrossRefGoogle Scholar
  17. 17.
    J. Païdassi and A. Echeverría, Sur 1’ oxydation du manganese dans l’air aux température élevées, 1959.  https://doi.org/10.1016/0001-6160(59)90024-0
  18. 18.
    W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, and J.J. Kai, Air-Oxidation of FeCoNiCr-Based Quinary High-Entropy Alloys at 700–900 °C, Corros. Sci., 2017, 121, p 116–125.  https://doi.org/10.1016/j.corsci.2017.02.008 CrossRefGoogle Scholar
  19. 19.
    J.C. Slater, Atomic Radii in Crystals, J. Chem. Phys., 1964, 41(10), p 3199–3204.  https://doi.org/10.1063/1.1725697 CrossRefGoogle Scholar
  20. 20.
    E. Clementi and D.L. Raimondi, Atomic Screening Constants from SCF Functions, J. Chem. Phys., 1963, 38(11), p 2686–2689.  https://doi.org/10.1063/1.1733573 CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Institute of Plasma PhysicsCzech Academy of SciencesPragueCzechia
  2. 2.Institute of Physics of MaterialsCzech Academy of SciencesBrnoCzechia

Personalised recommendations