Electrodeposition and Characterization of Cr-MoS2 Composite Coatings

  • M. Sadeghi-dehsahraee
  • P. NajafisayarEmail author


In this study, Cr-MoS2 composite coatings were electrodeposited from conventional Cr+6 baths containing different amounts of MoS2 particles and various types of surfactant (cationic and anionic). The effect of bath chemical composition on the coatings properties like their microstructure, morphology, chemical composition, corrosion behavior, surface roughness and microhardness was investigated using x-ray diffraction, scanning electron microscopy (SEM), energy-dispersive x-ray analysis, potentiodynamic polarization, electrochemical impedance spectroscopy, surface profilometry and Vickers microhardness measurement techniques, respectively. The results showed that incorporation of MoS2 particles into the composite coatings is very limited and Cr matrix with very low crystallinity will be electrodeposited at various experimental conditions. The presence of MoS2 particles in the bath (up to an optimum value) leads to the formation of the composite coatings with lower surface roughness values than that of conventional chromium coating. Although more MoS2 particles will be incorporated into the electrodeposits when the solid content of the bath increases, chromium cannot be electrodeposited from baths containing high amounts of MoS2 particles. Application of cationic surfactant promotes incorporation of particles into the Cr metallic matrix. Moreover, the presence of surfactant in the bath results in the formation of coatings with less microcracks. All the composite coatings have more hardness values than that of conventional chromium coating; maximum hardness is attributed to the coatings that were electrodeposited from baths containing no surfactant. The corrosion test results revealed that the smooth coatings containing more MoS2 particles and less microcracks exhibit more corrosion resistance than the other ones.


chromium composite coating electrodeposition MoS2 



  1. 1.
    M.A. Juneghani, M. Farzam, and H. Zohdirad, Wear and Corrosion Resistance and Electroplating Characteristics of Electrodeposited Cr-SiC Nano-Composite Coatings, Trans. Nonferrous Met. Soc. China (English Edition), 2013, 23, p 1993–2001CrossRefGoogle Scholar
  2. 2.
    M. Schlesinger, Electroplating, Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, Hoboken, 2004Google Scholar
  3. 3.
    J.K. Dennis and T.E. Such, Nickel and Chromium Plating, Elsevier, Amsterdam, 1993, p 464CrossRefGoogle Scholar
  4. 4.
    J. Torras, I. Buj, M. Rovira, and J. de Pablo, Chromium Recovery from Exhausted Baths Generated in Plating Processes and Its Reuse in the Tanning Industry, J. Hazard. Mater., 2012, 209–210, p 343–347CrossRefGoogle Scholar
  5. 5.
    M.K. Oden and H. Sari-Erkan, Treatment of Metal Plating Wastewater Using Iron Electrode by Electrocoagulation Process: Optimization and Process Performance, Process Saf. Environ. Prot., 2018, 119, p 207–217CrossRefGoogle Scholar
  6. 6.
    R. Rodríguez, J.J. Espada, M. Gallardo, R. Molina, and M.J. López-Muñoz, Life Cycle Assessment and Techno-Economic Evaluation of Alternatives for the Treatment of Wastewater in a Chrome-Plating Industry, J. Clean. Prod., 2018, 172, p 2351–2362CrossRefGoogle Scholar
  7. 7.
    D. Del Pianta, J. Frayret, C. Gleyzes, C. Cugnet, J.C. Dupin, and I. Le Hecho, Determination of the Chromium(III) Reduction Mechanism During Chromium Electroplating, Electrochim. Acta, 2018, 284, p 234–241CrossRefGoogle Scholar
  8. 8.
    L. Vernhes, M. Azzi, and J.E. Klemberg-Sapieha, Alternatives for Hard Chromium Plating: Nanostructured Coatings for Severe-Service Valves, Mater. Chem. Phys., 2013, 140, p 522–528CrossRefGoogle Scholar
  9. 9.
    R. Giovanardi and G. Orlando, Chromium Electrodeposition from Cr(III) Aqueous Solutions, Surf. Coat. Technol., 2011, 205, p 3947–3955CrossRefGoogle Scholar
  10. 10.
    C. Forsich, C. Dipolt, D. Heim, T. Mueller, A. Gebeshuber, R. Holecek, and C. Lugmair, Potential of Thick a-C:H: Si Films as Substitute for Chromium Plating, Surf. Coat. Technol., 2014, 241, p 86–92CrossRefGoogle Scholar
  11. 11.
    S. Kalidhasan, A. Santhana Krishna Kumar, V. Rajesh, and N. Rajesh, The Journey Traversed in the Remediation of Hexavalent Chromium and the Road Ahead Toward Greener Alternatives—A Perspective, Coord. Chem. Rev., 2016, 317, p 157–166CrossRefGoogle Scholar
  12. 12.
    L. Shi, C. Sun, and W. Liu, Electrodeposited Nickel-Cobalt Composite Coating Containing MoS2, Appl. Surf. Sci., 2008, 254, p 6880–6885CrossRefGoogle Scholar
  13. 13.
    S. Surviliene, A. Lisowska-Oleksiak, and A. Češuniene, Effect of ZrO2 on Corrosion Behaviour of Chromium Coatings, Corros. Sci., 2008, 50, p 338–344CrossRefGoogle Scholar
  14. 14.
    S. Communication, S. Ke-ning, H. Xin-ning, and W. Ji-ren, Electrodeposited Cr-A12O3, Wear, 1996, 1648, p 3–5Google Scholar
  15. 15.
    M. Rezaei-Sameti, S. Nadali, J. Rajabi, and M. Rakhshi, The Effects of Pulse Electrodeposition Parameters on Morphology, Hardness and Wear Behavior of Nano-Structure Cr-WC Composite Coatings, J. Mol. Struct., 2012, 1020, p 23–27CrossRefGoogle Scholar
  16. 16.
    Y.C. Chang, Y.Y. Changb, and C.I. Linb, Process Aspects of the Electrolytic Codeposition of Molybdenum Disulfide with Nickel, Electrochim. Acta, 1998, 43, p 315–324CrossRefGoogle Scholar
  17. 17.
    V. Kanagalasara and T.V. Venkatesha, Studies on Electrodeposition of Zn-MoS2 Nanocomposite Coatings on Mild Steel and Its Properties, J. Solid State Electrochem., 2012, 16, p 993–1001CrossRefGoogle Scholar
  18. 18.
    M.N. Rahaman, Ceramic Processing and Sintering, CRC Press, Boca Raton, 2003, p 875Google Scholar
  19. 19.
    M. Salehi Doolabi, S. Khatiboleslam Sadrnezhaad, and D. Salehi Doolabi, Electroplating and Characterization of Cr–Al2O3 Nanocomposite Film from a Trivalent Chromium Bath, Anti-Corros. Methods Mater., 2014, 61, p 205–214CrossRefGoogle Scholar
  20. 20.
    E.S. Güler, E. Konca, and İ. Karakaya, Effect of Electrodeposition Parameters on the Current Density of Hydrogen Evolution Reaction in Ni and Ni-MoS2 Composite Coatings, Int. J. Electrochem. Sci., 2013, 8, p 5496–5505Google Scholar
  21. 21.
    S. Surviliene, L. Orlovskaja, G. Bikulcius, and S. Biallozor, Effect of MoO2 and TiO2 on Electrodeposition and Properties of Chromium Coating, Surf. Coat. Technol., 2001, 137, p 230–234CrossRefGoogle Scholar
  22. 22.
    R. Tacken, P. Jiskoot, and L.J.J. Janssen, Effect of Magnetic Charging of Ni on Electrolytic codepOsition of Zn with Ni Particles, J. Appl. Electrochem., 1996, 26(2), p 129–134CrossRefGoogle Scholar
  23. 23.
    M. Schlesinger and M. Paunovic, Modern Electroplating, Wiley, Hoboken, 2011Google Scholar
  24. 24.
    N.V. Mandich, Chemistry of Chromium, Engineering, 1995, 95, p 1055–1078Google Scholar
  25. 25.
    Q. Tang and D. Jiang, Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles, ACS. Catal., 2016, 6(8), p 4953–4961CrossRefGoogle Scholar
  26. 26.
    M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets, J. Am. Chem. Soc., 2013, 135(28), p 10274–10277CrossRefGoogle Scholar
  27. 27.
    T. Tadros, Critical micelle concentration BT, Encyclopedia of Colloid and Interface Science, T. Tadros, Ed., Springer, Berlin, 2013, p 209–210 CrossRefGoogle Scholar
  28. 28.
    J. Sjoblom, Encyclopedic Handbook of Emulsion Technology, Taylor & Francis, Routledge, 2001, p 35–45CrossRefGoogle Scholar
  29. 29.
    A. Gadhave, Determination of Hydrophilic-Lipophilic Balance Value, Int. J. Sci. Res., 2014, 3(4), p 573–575Google Scholar
  30. 30.
    J. T. Davies, A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. in Proceedings of 2nd International Congress Surface Activity, Butterworths Scientific Publication, London, 1957, pp. 426–438.Google Scholar
  31. 31.
    A. Cifuentes, J.L. Bernal, and J.C. Diez-Masa, Determination of Critical Micelle Concentration Values Using Capillary Electrophoresis Instrumentation, Anal. Chem., 1997, 69(20), p 4271–4274CrossRefGoogle Scholar
  32. 32.
    F. Kopecký, T. Fazekaš, B. Kopecká, and P. Kaclík, Hydrophobicity and Critical Micelle Concentration of Some Quaternary Ammonium Salts with One or two Hydrophobic Tails, Acta Fac. Pharm. Univ. Comen., 2007, 54, p 84–94Google Scholar
  33. 33.
    A. Hovestad and L.J.J. Janssen, Electrochemical Codeposition of Inert Particles in a Metallic Matrix, J. Appl. Electrochem., 1995, 25, p 519–527CrossRefGoogle Scholar
  34. 34.
    L. Benea, P.L. Bonora, A. Borello, S. Martelli, F. Wenger, P. Ponthiaux, and J. Galland, Composite Electrodeposition to Obtain Nanostructured Coatings, J. Electrochem. Soc., 2001, 148(7), p 461–465CrossRefGoogle Scholar
  35. 35.
    V. Greco and W.J.P. Baldauf, Electrodeposition of Ni-Al2 O3, Ni-TiO2 and Cr-TiO2 Dispersion Hardened Alloys, Plating, 1968, 55(3), p 250–257Google Scholar
  36. 36.
    K. Helle and F. Walsh, Electrodeposition of Composite Layers Consisting of Inert Inclusions in a Metal Matrix, Trans. IMF, 1997, 75(2), p 53–58CrossRefGoogle Scholar
  37. 37.
    K. Helle, R.C. Groot, A. Kamp, Codeposition of a metal and fluorocarbon resin particles, ed., Google Patents, 1978.Google Scholar
  38. 38.
    K. Helle, Electroplating with Inclusions. in K. Helle (ed) Proceedings of 4th International Conference on Organic Coatings Science and Technology, Athens, 1978, pp. 241-250Google Scholar
  39. 39.
    P. Najafi Sayar and M.E. Bahrololoom, Tribological Properties of Pulse Plated Nanocrystalline Nickel Coatings as Environmentally Accepted Alternative to Conventional Chromium Coatings, Trans. IMF, 2009, 87, p 246–253CrossRefGoogle Scholar
  40. 40.
    S. Kumaraguru, G.G. Kumar, S. Raghu, and R. Gnanamuthu, Fabrication of Ternary Ni-TiO2-TiC Composite Coatings and Their Enhanced Microhardness for metal Finishing Application, Appl. Surf. Sci., 2018, 447, p 463–470CrossRefGoogle Scholar
  41. 41.
    G. Gyawali, B. Joshi, K. Tripathi, and S.W. Lee, Effect of Ultrasonic Nanocrystal Surface Modification on Properties of Electrodeposited Ni and Ni-SiC Composite Coatings, J. Mater. Eng. Perform., 2017, 26, p 4462–4469CrossRefGoogle Scholar
  42. 42.
    S. Armyanov and G. Sotirova-Chakarova, Hydrogen Desorption and Internal Stress in Nickel Coatings Obtained by Periodic Electrodeposition, J. Electrochem. Soc., 1992, 139, p 3454–3457CrossRefGoogle Scholar
  43. 43.
    G. Sotirova, S. Sarnev, and S. Armyanov, Evolution of the Included Hydrogen, Internal Stress, Microhardness and Microstructure of Electrodeposited Cobalt, Electrochim. Acta, 1989, 34, p 1237–1242CrossRefGoogle Scholar
  44. 44.
    S.T. Aruna, C. Anandan, and V.K.W. Grips, Effect of Probe Sonication and Sodium Hexametaphosphate on the Microhardness and Wear Behavior of Electrodeposited Ni–SiC Composite Coating, Appl. Surf. Sci., 2014, 301, p 383–390CrossRefGoogle Scholar
  45. 45.
    Z.J. Huang and D.S. Xiong, MoS2 Coated with Al2O3 for Ni–MoS2/Al2O3 Composite Coatings by Pulse Electrodeposition, Surface Coat. Technol., 2008, 202, p 3208–3214CrossRefGoogle Scholar
  46. 46.
    H.S. Maharana and A. Basu, Effects of Different Surfactants on Structural, Tribological and Electrical Properties of Pulsed Electro-Codeposited Cu-ZrO2 Composite Coatings, J. Mater. Eng. Perform., 2018, 27, p 1854–1865CrossRefGoogle Scholar
  47. 47.
    E. Edward Anand and S. Natarajan, Effect of Carbon Nanotubes on Corrosion and Tribological Properties of Pulse-Electrodeposited Co-W Composite Coatings, J. Mater. Eng. Perform., 2015, 24, p 128–135CrossRefGoogle Scholar
  48. 48.
    P. Leisner and I. Belov, Influence of Process Parameters on Crack Formation in Direct Current and Pulse Reversal Plated Hard Chromium, Trans. IMF, 2009, 87, p 90–96CrossRefGoogle Scholar
  49. 49.
    V.O. Hordienko, V.S. Protsenko, S.C. Kwon, J.-Y. Lee, and F.I. Danilov, Electrodeposition of Chromium Coatings from Sulfate–Carbamide Electrolytes Based on Cr(III) Compounds, Mater. Sci., 2011, 46, p 647–652CrossRefGoogle Scholar
  50. 50.
    P.B.A. Brenner and Ch Jennings, Physical Properties of Electrodeposited Chromium, Res. Natl. Bureau Stand., 1948, 40, p 31–59CrossRefGoogle Scholar
  51. 51.
    J. Torres-Gonzaléz and P. Benaben, Study of the Influence of Electrolyte Chemical Composition on the Properties of Chromium Electrodeposits-Microstructure, Crystallographic Texture, Residual Stress, and Microhardness, Met. Finish., 2003, 101, p 107–116CrossRefGoogle Scholar
  52. 52.
    E. Ünal and İ.H. Karahan, Production and Characterization of Electrodeposited Ni-B/hBN Composite Coatings, Surf. Coat. Technol., 2018, 333, p 125–137CrossRefGoogle Scholar
  53. 53.
    D. Ahmadkhaniha, F. Eriksson, P. Leisner, and C. Zanella, Effect of SiC Particle Size and Heat-Treatment on Microhardness and Corrosion Resistance of NiP Electrodeposited Coatings, J. Alloy. Compd., 2018, 2018(769), p 1080–1087CrossRefGoogle Scholar
  54. 54.
    U.S. Waware, A.M.S. Hamouda, B. Bajaj, T. Borkar, and A.K. Pradhan, Synthesis and Characterization of Electrodeposited Ni-B-Tl2O3 Composite Coatings, J. Alloy. Compd., 2018, 769, p 353–359CrossRefGoogle Scholar
  55. 55.
    S. Shanmugasamy, K. Balakrishnan, A. Subasri, S. Ramalingam, and A. Subramania, Development of CeO2 Nanorods Reinforced Electrodeposited Nickel Nanocomposite Coating and Its Tribological and Corrosion Resistance Properties, J. Rare Earths, 2018, 36, p 1319–1325CrossRefGoogle Scholar
  56. 56.
    Z. Zhang, C. Jiang, and N. Ma, Microstructure and Corrosion Behavior of Electrodeposited Ni-Co-ZrC Coatings, J. Mater. Eng. Perform., 2014, 23, p 4065–4071CrossRefGoogle Scholar
  57. 57.
    G. Yılmaz, G. Hapçı, and G. Orhan, Properties of Ni/Nano-TiO2 Composite Coatings Prepared by Direct and Pulse Current Electroplating, J. Mater. Eng. Perform., 2015, 24, p 709–720CrossRefGoogle Scholar
  58. 58.
    T. He, Y. He, H. Li, Z. Su, Y. Fan, and Z. He, Fabrication of Ni-W-B4C Composite Coatings and Evaluation of Its Micro-Hardness and Corrosion Resistance Properties, Ceram. Int., 2018, 44, p 9188–9193CrossRefGoogle Scholar
  59. 59.
    W. Jiang, L. Shen, M. Qiu, M. Xu, and Z. Tian, Microhardness, Wear, and Corrosion Resistance of Ni–SiC Composite Coating with Magnetic-Field-Assisted Jet Electrodeposition, Materials Research Express, 2018, 5, p 964–967Google Scholar
  60. 60.
    P. Najafi Sayar and M.E. Bahrololoom, Comparison of Anodic Dissolution, Surface Brightness and Surface Roughness of Nanocrystalline Nickel Coatings with Conventional Decorative Chromium Coatings, Appl. Electrochem., 2009, 39, p 2489–2496CrossRefGoogle Scholar
  61. 61.
    S. Surviliene, V. Jasulaitiene, and V.A. Safonov, Effect of WC on Electrodeposition and Corrosion Behaviour of Chromium Coatings, J. Appl. Electrochem., 2005, 35, p 9–15CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringShiraz UniversityShirazIran

Personalised recommendations