Advertisement

Ni-Rich Phases in Al-12%Si-4%Cu-1.2%Mn-x%Ni Heat-Resistant Alloys and Effect of Ni-Alloying on Tensile Mechanical Properties

  • Hengcheng LiaoEmail author
  • Guangjin Li
  • Qu Liu
Article
  • 12 Downloads

Abstract

In this study, formation of Ni-rich phases in Al-12 wt.%Si-4 wt.%Cu-1.2 wt.%Mn-xwt.%Ni (x = 0.8, 2.0, 2.4, 3.4) alloys and their effect on high temperature strength were investigated by microstructure characterization and tensile test. Three types of Ni-rich phases are observed: δ-Al3CuNi, γ-Al7Cu4Ni and ε-Al3Ni. The amount of Ni-rich phases is increased with Ni content in the alloy. Ni-rich phases in Ni1-Ni2 alloys (x = 0.8 and 2.0, respectively) are in the form of δ-Al3CuNi and γ-Al7Cu4Ni, and however, a great amount of rod-like or needle-like ε-Al3Ni phase is observed in Ni3-Ni4 alloy (x = 2.4 and 3.4, respectively). Microstructure observation of the samples after solutionizing at 510 °C for 5 h indicates that these Ni-rich phases have good thermal stability. Ni-alloying in Al-12 wt.%Si-4 wt.%Cu-1.2 wt.%Mn alloy decreases the strength at room temperature, but proper addition of Ni can remarkably improve the strength at 350 °C and considerably and efficiently slow down the softening effect of material at high temperature stage. 0.8 wt.% Ni addition results in a considerable increase in UTS at 350 °C from 65 MPa (without Ni addition) to 97 MPa. During tensile test at room temperature, both Mn-rich phase dendrites and Ni-rich compounds are the crack originating sites of cleavage fracture. However, during tensile test at 350 °C, the Mn-rich dendrites are the sites for fracture, but Ni-rich compounds are not.

Keywords

heat-resistant aluminum alloy high temperature strength microstructure nickel-rich phase 

Notes

Acknowledgment

This work is supported by Jiangsu Key Laboratory of Advanced Metallic Materials (Grant Number BM2007204) and the Fundamental Research Funds for the Central Universities (Grant Number 2242016K40011).

Data Availability Statement

No additional data are available.

References

  1. 1.
    M. Karamouz, M. Azarbarmas, and M. Emamy, On the Conjoint Influence of Heat Treatment and Lithium Content on Microstructure and Mechanical Properties of A380 Aluminum Alloy, Mater. Des., 2014, 59, p 377–382CrossRefGoogle Scholar
  2. 2.
    P.J. Li, D.B. Zeng, J. Jia, and Q.C. Li, Effect of Lanthanum on Mechanical Properties of Zl702 Alloy At High Temperature, J. Chin. Rare Earth Soc., 2000, 18(2), p 187–189Google Scholar
  3. 3.
    S.G. Irizalp and N. Saklakoglu, Effect of Fe-Rich Intermetallics on the Microstructure and Mechanical Properties of Thixoformed A380 Aluminum Alloy, Eng. Sci. Technol. Int. J., 2014, 17(2), p 58–62CrossRefGoogle Scholar
  4. 4.
    M. Karamouz, M. Azarbarmas, M. Emamy, and M. Alipour, Microstructure, Hardness and Tensile Properties of A380 Aluminum Alloy with and Without Li Additions, Mater. Sci. Eng. A, 2013, 582, p 409–444CrossRefGoogle Scholar
  5. 5.
    J.Y. Hwang, R. Banerjee, H.W. Doty, and M.J. Kaufman, The Effect of Mg on the Structure and Properties of Type 319 Aluminum Casting Alloys, Acta Mater., 2009, 57(4), p 1308–1317CrossRefGoogle Scholar
  6. 6.
    Y. Li, Y. Yang, Y. Wu, L. Wang, and X. Liu, Quantitative Comparison of Three Ni-Containing Phases to the Elevated-Temperature Properties of Al-Si Piston Alloys, Mater. Sci. Eng. A, 2010, 527, p 7132–7137CrossRefGoogle Scholar
  7. 7.
    F.H. Samuel, Incipient Melting of Al5Mg8Si6Cu2 and Al2cu Intermetallics in Unmodified and Strontium-Modified Al-Si-Cu-Mg (319) Alloys During Solution Heat Treatment, J. Mater. Sci., 1990, 33, p 2283–2297CrossRefGoogle Scholar
  8. 8.
    Z. Asghar, G. Requena, and E. Boller, Three-Dimensional Rigid Multiphase Networks Providing High-Temperature Strength to Cast AlSi10Cu5Ni1-2 Piston Alloys, Acta Mater., 2011, 59(16), p 6420–6432CrossRefGoogle Scholar
  9. 9.
    Z. Asghar, G. Requena, and H.P. Degischer, Three-Dimensional Study of Ni Aluminides in an AlSi12 Alloy by Means of Light Optical and Synchrotron Microtomography, Acta Mater., 2009, 57(14), p 4125–4132CrossRefGoogle Scholar
  10. 10.
    Z. Asghar, G. Requena, and F. Kubel, The Role of Ni and Fe Aluminides on the Elevated Temperature Strength of an AlSi12 Alloy, Mater. Sci. Eng. A, 2010, 527(21–22), p 5691–5698CrossRefGoogle Scholar
  11. 11.
    Z. Asghar, G. Requena, and G.H. Zahid, Effect of Thermally Stable Cu- and Mg-Rich Aluminides on the High Temperature Strength of an AlSi12CuMgNi Alloy, Mater. Charact., 2014, 88, p 80–85CrossRefGoogle Scholar
  12. 12.
    A.R. Farkoosh, M. Javidani, M. Hoseini, D. Larouche, and M. Pekguleryuz, Phase Formation in As-Solidified and Heat-Treated Al-Si-Cu-Mg-Ni Alloys: Thermodynamic Assessment and Experimental Investigation for Alloy Design, J. Alloys Compd., 2013, 551, p 596–606CrossRefGoogle Scholar
  13. 13.
    G. Rajaram, S. Kumaran, and T.S. Rao, Effect of Graphite and Transition Elements (Cu, Ni) on High Temperature Tensile Behaviour of Al-Si Alloys, Mater. Chem. Phys., 2011, 128(1–2), p 62–69CrossRefGoogle Scholar
  14. 14.
    Z. Qian, X. Liu, and D. Zhao, Effects of Trace Mn Addition on the Elevated Temperature Tensile Strength and Microstructure of A Low-Iron Al-Si Piston Alloy, Mater. Lett., 2008, 62(14), p 2146–2149CrossRefGoogle Scholar
  15. 15.
    Y.G. Li, Y. Yang, Y.Y. Wu, Z.S. Wei, and X.F. Liu, Supportive Strengthening Role of Cr-Rich Phase on Al-Si Multicomponent Piston Alloy at Elevated Temperature, Mater. Sci. Eng. A, 2011, 528(13–14), p 4427–4430CrossRefGoogle Scholar
  16. 16.
    C. Suwanpreecha, P. Pandee, and U. Patakham, New Generation of Eutectic Al-Ni Casting Alloys for Elevated Temperature Services, Mater. Sci. Eng. A, 2018, 709, p 46–54CrossRefGoogle Scholar
  17. 17.
    Y. Yang, K. Yu, Y.G. Li, D.G. Zhao, and X.F. Liu, Evolution of Nickel-Rich Phases in Al-Si-Cu-Ni-Mg Piston Alloys with Different Cu Additions, Mater. Des., 2012, 33, p 220–225CrossRefGoogle Scholar
  18. 18.
    Y.Y. Wu, J.G. Song, X.F. Liu, B.G. Jiang, H.X. Chen, and X.F. Bian, Effect of Nickel on the Iron-Rich Intermetallic In Zl109 Alloy, Foundry, 2006, 55(11), p 1178–1180Google Scholar
  19. 19.
    H.C. Liao, Y.Y. Tang, X.J. Suo, G.J. Li, Y.Y. Hu, U.S. Dixit, and P. Petrov, Dispersoid Particles Precipitated during the Solutionizing Course of Al-12 wt.%Si-4 wt.%Cu-1.2 wt.%Mn Alloy and its Contribution to High Temperature Strength, Mater. Sci. Eng. A, 2017, 699, p 201–209CrossRefGoogle Scholar
  20. 20.
    X.J. Suo, H.C. Liao, and Y.Y. Hu, Formation of Al15Mn3Si2 Phase during Solidification of a Novel Al-12%Si-4%Cu-1%Mn Heat-Resistant Casting Alloy and its Thermal Stability, J. Mater. Eng. Perform., 2018, 27, p 2910–2920CrossRefGoogle Scholar
  21. 21.
    H. Liao, H. Yiyun, Z. He, Y. Tang, and G. Li, Effect of Mn Content on Microstructure and Heat-Resistance of Near Eutectic Al-Si-Mn-Cu Alloy, Foundry Technol., 2017, 38(6), p 1283–1287Google Scholar
  22. 22.
    H.C. Liao, Q. Liu, G.J. Li, and U.S. Dixit, Effect of Ni Addition on the Solidification Process and Microstructure of Al-12%Si-4%Cu-1.2%Mn-x%Ni Heat-Resistant Alloys, Miner. Metals Mater. Ser., 2018, 5(Part F4), p 267–278CrossRefGoogle Scholar
  23. 23.
    Y. Yang, S.Y. Zhong, Z. Chen, M.L. Wang, N.H. Ma, and H.W. Wang, Effect of Cr Content and Heat-Treatment on the High Temperature Strength of Eutectic Al-Si Alloys, J. Alloys Compds., 2015, 647, p 63–69CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations