Investigation of Compatibility Between M-Cr-Al-X Thermal Spray Coatings and Third Generation γ-TiAl Alloys

  • Ivan MazilinEmail author
  • Nikolay ZaitsevEmail author
  • Anton Artamonov
  • Lev Baldaev
  • Vladislav Zadorozhnyy
  • Mikhail Gorshenkov
  • Andrei Stepashkin
  • Vladimir Sudarchikov
  • Sergey Kaloshkin


In this work, the physical and chemical compatibility of cast Ti-Al-Nb-Cr-Zr and Ti-Al-Nb-Cr-Zr-B-La alloys was investigated with oxidation-resistant M-Cr-Al-X thermal spray coatings. Ti and Al are main alloy elements to form γ-TiAl and α2-Ti3Al phases. To obtain coatings, we used air plasma spray and high-velocity oxygen fuel equipment. Four commercially available M-Cr-Al-X powders, including Ta-containing, were used as starting materials. Our investigation of compatibility between M-Cr-Al-X thermal spray coatings and γ-TiAl alloys consists of isothermal annealing in air muffle furnace during 100 h at 920 °C, followed by samples investigation. Oxidation products formed at coatings surface were studied by XRD analysis with Rietveld refinement. Interdiffusion between coatings and alloys was studied by means of cross-sectional SEM with EDX analysis. Plots were made to show concentration of each main element at the end of experiments. Samples were subjected to dynamic mechanical thermal analysis in order to determine the effect of high-temperature exposure on complex elastic modulus. Finally, burner rig cycling test was performed to estimate the thermal shock resistance of M-Cr-Al-X coatings.


γ-TiAl alloy aluminum MCrAlY coatings oxidation phase composition titanium thermal spray 



This work was supported by government contract No 11.1934.2017/ПЧ dated 31.05.2017. Additional support was provided through the European Research Council under the ERC Advanced Grant INTELHYB, Grant Number: ERC-2013-ADG-340025.


  1. 1.
    F. Appel, J.D.H. Paul, and M. Oering, Gamma Titanium Aluminide Alloys: Science and Technology, Wiley, Weinheim, 2011, p 750CrossRefGoogle Scholar
  2. 2.
    R. Pflumm, S. Friedle, and M. Schütze, Oxidation Protection of g-TiAl-Based Alloys: A Review, Intermetallics, 2015, 56, p 1–14CrossRefGoogle Scholar
  3. 3.
    M. Moser, P.H. Mayrhofer, and H. Clemens, On the Influence of Coating and Oxidation on the Mechanical Properties of a γ-TiAl Based Alloy, Intermetallics, 2008, 16, p 1206–1211CrossRefGoogle Scholar
  4. 4.
    R. Braun, M. Fröhlich, C. Leyens, and D. Renusch, Oxidation Behavior of TBC Systems on γ-TiAl Based Alloy Ti-45Al-8Nb, Oxid. Met., 2009, 71, p 295–318CrossRefGoogle Scholar
  5. 5.
    Z. Tang, F. Wang, and W. Wu, Effect of MCrAlY Overlay Coatings on Oxidation Resistance of TiAl Intermetallics, Surf. Coat. Technol., 1998, 99, p 248–252CrossRefGoogle Scholar
  6. 6.
    T. Kuranishi, H. Habazaki, and H. Konno, Oxidation-Resistant Multilayer Coatings Using an Anodic Alumina Layer as a Diffusion Barrier on γ-TiAl Substrates, Surf. Coat. Technol., 2005, 200, p 2438–2444CrossRefGoogle Scholar
  7. 7.
    A. Rabiei and A.G. Evans, Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings, Acta Materialia, 2000, 48, p 3963–3976CrossRefGoogle Scholar
  8. 8.
    W.J. Quadakkers, V. Shemet, D. Sebold, R. Anton, E. Wessel, and L. Singheiser, Oxidation Characteristics of a Platinized MCrAlY Bond Coat for TBC Systems During Cyclic Oxidation at 1000 °C, Surf. Coat. Technol., 2005, 199, p 77–82CrossRefGoogle Scholar
  9. 9.
    A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser, and W.J. Quadakkers, Effect of Surface Condition on the Oxidation Behaviour of MCrAlY Coatings, Surf. Coat. Technol., 2006, 201, p 3824–3828CrossRefGoogle Scholar
  10. 10.
    Z. Tang, F. Wang, and W. Wu, Effect of a Sputtered TiAlCr Coating on the Oxidation Resistance of TiAl Intermetallic Compound, Oxid. Met., 1997, 48, p 511CrossRefGoogle Scholar
  11. 11.
    Z. Tang, F. Wang, and W. Wu, The Effects of Several Coatings on Cyclic Oxidation Resistance of TiAl Intermetallics, Surf. Coat. Technol., 1998, 110(1–2), p 57–61CrossRefGoogle Scholar
  12. 12.
    A.V. Kartavykh, E.A. Asnis, N.V. Piskun et al., A Promising Microstructure/Deformability Adjustment of β-Stabilized γ-TiAl Intermetallics, Mater. Lett., 2016, 162, p 180–184CrossRefGoogle Scholar
  13. 13.
    R. Chen, X. Gong, Y. Wang, G. Qin, N. Zhang, Y. Su, H. Ding, J. Guo, and H. Fu, Microstructure and Oxidation Behaviour of Plasma-Sprayed NiCoCrAlY Coatings With and Without Ta on Ti44Al6Nb1Cr Alloys, Corros. Sci., 2018, 136, p 244–254CrossRefGoogle Scholar
  14. 14.
    M. Gorshenkov, A. Kartavykh, and V. Tcherdyntsev, Tribochemistry of Dry-Sliding Wear of Structural TiAl(Nb, Cr, Zr)B, La Intermetallics Family Against the Chromium Steel, Tribol. Int., 2015, 90, p 270–277CrossRefGoogle Scholar
  15. 15.
    Y.P. Tarasenko, I.N. Tsareva, O.B. Berdnik, Y.A. Fel, and L.A. Krivina, Research of a Heat-Resistant Intermetallic Underlayer for the Heat-Shielding Coating of Gas Turbine Engine Turbine Blades, Vestnik Samara State Aerosp. Univ., 2014, 45(3), p 85–95CrossRefGoogle Scholar
  16. 16.
    M. Shibata, S. Kuroda, H. Murakami, M. Ode, M. Watanabe, and Y. Sakamoto, Comparison of Microstructure and Oxidation Behavior of CoNiCrAlY Bond Coatings Prepared by Different Thermal Spray Processes, Mater. Trans., 2006, 47(7), p 1638–1642CrossRefGoogle Scholar
  17. 17.
    T.M. Pollock, D.M. Lipkin, and K.J. Hemker, Multifunctional Coating Interlayers for Thermal-Barrier Systems, MRS Bull., 2012, 37(10), p 923–931CrossRefGoogle Scholar
  18. 18.
    J.A. Haynes, M.K. Ferber, and W.D. Porter, Thermal Cycling Behavior of Plasma-Sprayed Thermal Barrier Coatings with Various MCrAlX Bond Coats, J. Therm Spray Technol., 2000, 9(1), p 38CrossRefGoogle Scholar
  19. 19.
    G.D. Girolamo, A. Brentari, and E. Serra, Morphology and Microstructure of NiCoCrAlYRe Coatings after Thermal Aging and Growth of an Al2O3-Rich Oxide Scale, Coatings, 2014, 4, p 701–714CrossRefGoogle Scholar
  20. 20.
    D.J. Kim, X. Huang, D.Y. Seo, and Y.W. Kim, Cyclic Oxidation and Interdiffusion Behaviour of a NiCrAlY Coated Powder Metallurgy Beta Gamma TiAl-2Nb-2Mo Alloy, Oxid. Met., 2012, 78(1–2), p 31–50CrossRefGoogle Scholar
  21. 21.
    Y.X. Cheng, W. Wang, S.L. Zhu, L. Xin, and F.H. Wang, Arc Ion Plated-Cr2O3 Intermediate Film as a Diffusion Barrier Between NiCrAlY and γ-TiAl, Intermetallics, 2010, 18(4), p 736–739CrossRefGoogle Scholar
  22. 22.
    S. Saeidi, Microstructure, Oxidation & Mechanical Properties of As-Sprayed and Annealed HVOF & VPS CoNiCrAlY Coatings, Doctoral Dissertation. UK: University of Nottingham, 2010Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Ivan Mazilin
    • 1
    Email author
  • Nikolay Zaitsev
    • 1
    • 2
    Email author
  • Anton Artamonov
    • 1
  • Lev Baldaev
    • 1
  • Vladislav Zadorozhnyy
    • 2
    • 3
  • Mikhail Gorshenkov
    • 2
  • Andrei Stepashkin
    • 2
  • Vladimir Sudarchikov
    • 2
  • Sergey Kaloshkin
    • 2
  1. 1.TSPC Ltd.Scherbinka City, MoscowRussia
  2. 2.NUST MISISMoscowRussia
  3. 3.Erich Schmidt Institute of Materials Science, Austrian Academy of SciencesLeobenAustria

Personalised recommendations