Microstructure Evolution and Improved Creep Behavior of Mg-Al-Si Alloy Matrix Composite Reinforced with SiC Nanoparticles

  • Ming Li
  • Gaozhan Zhao
  • Zhiwei Huang
  • Jianquan Tao
  • Yuanyuan Wan
  • Zhihui Xing
  • Hongxia WangEmail author
  • Qiang Chen


The Mg-9Al-1Si matrix composite reinforced with SiC nanoparticles is fabricated by semisolid stirring-assisted ultrasonic vibration, which contains finer grains and a more uniform microstructure compared to that of the Mg-9Al-1Si alloys. The sizes of the Mg17Al12 and Mg2Si phases decreased continuously as the volume fraction of n-SiCp increased from 0 to 1% and then increased apparently when the volume fraction of n-SiCp increased to 1.5%. The steady-creep rates of the 1 vol.% n-SiCp/Mg-9Al-1Si are approximately two times lower than those of the Mg-9Al-1Si matrix alloy at 200 °C under applied stress of 70 MPa due to the strengthening effect of the nanosized SiCp. The reason for the improved creep properties is mainly attributed to the obvious grain boundary strengthening, the Orowan strengthening mechanism, the load transfer effect, and the pinning effect of the n-SiCp and the refined Mg17Al12 and Mg2Si phases.


creep resistance magnesium matrix composite microstructure SiC nanoparticles strengthening mechanism 



This work was supported by the National Natural Science Foundation of China (Nos. 51301118, 51375464 and 51404166), the National Natural Science Foundation of Shanxi Province (No. 201701D121045), Shanxi Province Scientific Facilities and Instruments Shared Service Platform (No. 201805D141005) and the Shanxi Key Laboratory of Advanced Magnesium-Based Material, Taiyuan University of Technology (AMM-2017-12).


  1. 1.
    K.B. Nie, X.J. Wang, K. Wu, X.S. Hu, and M.Y. Zheng, Development of SiCp/AZ91 Magnesium Matrix Nanocomposites Using Ultrasonic Vibration, Mater. Sci. Eng., A, 2012, 540, p 123–129CrossRefGoogle Scholar
  2. 2.
    Q. Chen, Z.D. Zhao, G. Chen, and B. Wang, Effect of Accumulative Plastic Deformation on Generation of Spheroidal Structure, Thixoformability and Mechanical Properties of Large-Size AM60 Magnesium Alloy, J. Alloys Compd., 2015, 632, p 190–200CrossRefGoogle Scholar
  3. 3.
    X.G. Qiao, T. Ying, M.Y. Zheng, E.D. Wei, K. Wu, X.S. Hu, W.M. Gan, H.G. Brokmeier, and I.S. Golovin, Microstructure Evolution and Mechanical Properties of Nano-SiCp/AZ91 Composite Processed by Extrusion and Equal Channel Angular Pressing (ECAP), Mater. Charact., 2016, 121, p 222–230CrossRefGoogle Scholar
  4. 4.
    L. Zhang, Q.D. Wang, W.J. Liao, W. Guo, B. Ye, H.Y. Jiang, and W.J. Ding, Effect of Homogenization on the Microstructure and Mechanical Properties of the Repetitive-Upsetting Processed AZ91D Alloy, J. Mater. Sci. Technol., 2017, 33, p 935–940CrossRefGoogle Scholar
  5. 5.
    L.W. Zheng, H.H. Nie, W.G. Zhang, W. Liang, and Y.D. Wang, Microstructural Refinement and Improvement of Mechanical Properties of Hot-Rolled Mg-3Al-Zn Alloy Sheets Subjected to Pre-extrusion and Al-Si Alloying, Mater. Sci. Eng., A, 2018, 722, p 58–68CrossRefGoogle Scholar
  6. 6.
    K.B. Nie, K.K. Deng, X.J. Wang, F.J. Xu, K. Wu, and M.Y. Zheng, Multidirectional Forging of AZ91 Magnesium Alloy and its Effects on Microstructures and Mechanical Properties, Mater. Sci. Eng., A, 2015, 624, p 157–168CrossRefGoogle Scholar
  7. 7.
    Z.Y. Zhang, H.S. Yu, G. Chen, H. Yu, and C.Z. Xu, Correlation Between Microstructure and Tensile Properties in Powder Metallurgy AZ91 Alloy, Mater. Lett., 2011, 65, p 2686–2689CrossRefGoogle Scholar
  8. 8.
    S.M. Zhu, M.A. Gibson, M.A. Easton, and J.F. Nie, The Relationship Between Microstructure and Creep Resistance in Die-cast Magnesium-Rare Earth Alloys, Scripta Mater., 2010, 63, p 698–703CrossRefGoogle Scholar
  9. 9.
    B.L. Mordike, Creep-Resistant Magnesium Alloys, Mater. Sic. Eng. A, 2002, 324, p 103–112CrossRefGoogle Scholar
  10. 10.
    K.M. Asl, A. Tari, and F. Khomamizadeh, The Effect of Different Content of Al, RE, and Si Element on the Microstructure, Mechanical and Creep Properties of Mg-Al Alloys, Mater. Sic. Eng. A, 2009, 523, p 1–6CrossRefGoogle Scholar
  11. 11.
    A. Srinivasana, J. Swaminathanb, M.K. Gunjanb, U.T.S. Pillai, and B.C. Paia, Effect of Intermetallic Phases on the Creep Behavior of AZ91 Magnesium Alloy, Mater. Sic. Eng. A, 2010, 527, p 1395–1403CrossRefGoogle Scholar
  12. 12.
    P.S. Roodposhti, A. Sarkar, K.L. Murty, and R.O. Scattergood, Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy, J. Mater. Eng. Perform., 2016, 25, p 3697–3709CrossRefGoogle Scholar
  13. 13.
    A. Srinivasana, U.T.S. Pillai, and B.C. Paia, Effect of Elemental Additions (Si and Sb) on the Ageing Behavior of AZ91 Magnesium Alloy, Mater. Sic. Eng. A, 2010, 527, p 6543–6550CrossRefGoogle Scholar
  14. 14.
    Z. Trojanová, V. Gärtnerová, A. Jäger, A. Námešný, M. Chalupová, P. Palček, and P. Lukáč, Mechanical and Fracture Properties of an AZ91 Magnesium Alloy Reinforced by Si and SiC Particles, Compos. Sci. Technol., 2009, 69, p 2256–2264CrossRefGoogle Scholar
  15. 15.
    G. Cao, H. Konishi, and X. Li, Mechanical Properties and Microstructure of SiC-Reinforced Mg-(2,4)Al-1Si Nanocomposites Fabricated by Ultrasonic Cavitation Based Solidification Processing, Mater. Sci. Eng., A, 2008, 486, p 357–362CrossRefGoogle Scholar
  16. 16.
    K.B. Nie, X.J. Wang, X.S. Hu, L. Xu, K. Wu, and M.Y. Zheng, Microstructure and Mechanical Properties of SiC Nanoparticles Reinforced Magnesium Matrix Composites Fabricated by Ultrasonic Vibration, Mater. Sci. Eng., A, 2011, 528, p 5278–5282CrossRefGoogle Scholar
  17. 17.
    L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X.L. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, and X.C. Li, Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles, Nature, 2015, 528, p 539–543CrossRefGoogle Scholar
  18. 18.
    Q. Chen, G. Chen, L.N. Han, N. Hu, F. Han, Z.D. Zhao, X.S. Xia, and Y.Y. Wan, Microstructure Evolution of SiCp/ZM6 (Mg-Nd-Zn) Magnesium Matrix Composite in the Semi-solid State, J. Alloys Compd., 2016, 656, p 67–76CrossRefGoogle Scholar
  19. 19.
    H. Zhang, Y.C. Zhao, Y. Yan, J.F. Fan, L.F. Wang, H.B. Dong, and B.S. Xu, Microstructure Evolution and Mechanical Properties of Mg Matrix Composites Reinforced with Al and Nano SiC Particles Using Spark Plasma Sintering Followed by Hot Extrusion, J. Alloys Compd., 2017, 725, p 652–664CrossRefGoogle Scholar
  20. 20.
    S. Kamrani, D. Penther, A. Ghasemi, R. Riedel, and C. Fleck, Microstructural Characterization of Mg-SiC Nanocomposite Synthesized by High Energy Ball Milling, Adv. Powder Technol., 2018, 29, p 1742–1748CrossRefGoogle Scholar
  21. 21.
    G. Li, M. Li, H.X. Wang, Z.Y. Zhang, W.L. Cheng, W. Liang, and C.J. Zhang, Dependence of Microstructure Characteristics and Mechanical Properties on Nanosize SiCp Contents in Mg-9Al Matrix Composites Fabricated by Ultrasonic-Assisted Semisolid Powder Hot Pressing, J. Mater. Res., 2018, 33, p 2689–2699CrossRefGoogle Scholar
  22. 22.
    K.B. Nie, X.J. Wang, K. Wu, L. Xu, M.Y. Zheng, and X.S. Hu, Processing, Microstructure and Mechanical Properties of Magnesium matrIx Nanocomposites Fabricated by Semisolid Stirring Assisted Ultrasonic Vibration, J. Alloys Compd., 2011, 509, p 8664–8669CrossRefGoogle Scholar
  23. 23.
    S.X. Zhang, M. Li, H.X. Wang, W.L. Cheng, W.W. Lei, Y.M. Liu, and W. Liang, Microstructure and Tensile Properties of ECAPed Mg-9Al-1Si-1SiC Composites: The Influence of Initial Microstructures, Materials, 2018, 11, p 136. CrossRefGoogle Scholar
  24. 24.
    B.F.S. Chultz, J.B. Ferguson, and P.K. Rohatgi, Microstructure and Hardness of Al2O3 Nanoparticle Reinforced Al-Mg Composites Fabricated by Reactive Wetting and String Mixing, Mater. Sci. Eng., A, 2011, 530, p 87–97CrossRefGoogle Scholar
  25. 25.
    W.S. Tian, Q.L. Zhao, Q.Q. Zhang, F. Qiu, and Q.C. Jiang, Superior creep resistance of 0.3 wt.% nano-sized TiCp/Al-Cu composite, Mater. Sic. Eng. A, 2017, 700, p 42–48CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Ming Li
    • 1
    • 2
  • Gaozhan Zhao
    • 1
  • Zhiwei Huang
    • 1
  • Jianquan Tao
    • 1
  • Yuanyuan Wan
    • 1
  • Zhihui Xing
    • 1
  • Hongxia Wang
    • 2
    Email author
  • Qiang Chen
    • 1
  1. 1.Southwest Technology and Engineering Research InstituteChongqingPeople’s Republic of China
  2. 2.Shanxi Key Laboratory of Advanced Magnesium-Based Materials, School of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations