Correlation between Antimicrobial Activity and Bioactivity of Na-Mica and Na-Mica/Fluorapatite Glass and Glass-Ceramics and Their Corrosion Protection of Titanium in Simulated Body Fluid

  • A. M. Fayad
  • A. M. FathiEmail author
  • A. A. El-Beih
  • M. A. Taha
  • S. A. M. Abdel-Hameed


The improvement in bioactivity of titanium (Ti) surface was achieved via coating it with Na-mica and Na-mica/fluorapatite glass and glass-ceramic using the low-cost electrophoretic deposition technique. Two compositions from pure Na-mica (M) and 80 Na-mica/20 fluorapatite glasses (MF) were prepared in the system SiO2-Al2O3-MgO-MgF2-Na2O-B2O3 using melting–quenching technique. Characterization of the as-prepared glasses and their counterpart glass-ceramics was studied using differential thermal analysis (DTA), x-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform-IR (FTIR) spectroscopy techniques. The bioactivity behavior was proved by studying the XRD, FTIR and SEM after immersing both glass and glass-ceramic samples in simulated body fluid (SBF). Both M and MF glasses and glass-ceramics showed high microhardness measurements and good antibacterial behavior. In vitro biodegradation was studied by using electrochemical corrosion behavior of the prepared glass- and glass-ceramic-coated Ti in SBF. The prepared coated Ti showed good corrosion resistance in SBF at 37 °C using potentiodynamic polarization technique, and the impedance data fitting explained the structure of the coating and the adsorption of SBF ions on the Ti surface. The MFGC provides the best corrosion-resistant coating, especially after sintering it.


antibacterial bioactivity corrosion fluorapatite glass-ceramics mica 



The authors of this work wish to thank the authorities of National Research Centre for financial support (Research Grant No. 11090114) to carry out this study.


  1. 1.
    E.D. Zanotto, A Bright Future for Glass-Ceramic, Am. Ceram. Soc. Bull., 2010, 89(8), p 19Google Scholar
  2. 2.
    W. Höland, Biocompatible and Bioactive Glass-Ceramics, State of the Art and New Directions, J. Non-Cryst. Solids, 1997, 219, p 192–197CrossRefGoogle Scholar
  3. 3.
    M.S. Dahiya, V.K. Tomer, and S. Duhan, Bioactive Glass/Glass Ceramics for Dental Applications, Applications of Nanocomposite Materials in Dentistry, Elsevier, Amsterdam, 2018, p 1–26Google Scholar
  4. 4.
    D. Grossman, Tetrasilicic Mica Glass-Ceramic Article, US Patent No 3839055, 1974Google Scholar
  5. 5.
    G. Beall, M. Montierth, and G. Smith, Machinable Glass-Ceramics, Microtecnic, 1972, 42, p 173Google Scholar
  6. 6.
    T. Kokubo, M. Shigematsu, Y. Nagashima, M. Tashiro, T. Nakamura, T. Yamamuro, and S. Higashi, Apatite- and Wollastonite-Containg Glass-Ceramics for Prosthetic Application, Bull. Inst. Chem. Res. Kyoto Univ., 1982, 60, p 260–268Google Scholar
  7. 7.
    R. Hill and D. Wood, Apatite Mullite Glass-Ceramics, J. Mater. Sci. Mater. Med., 1995, 6(6), p 311–318CrossRefGoogle Scholar
  8. 8.
    A. Clifford and R. Hill, Apatite-Mullite Glass-Ceramics, J. Non-Cryst. Solids, 1996, 196(1–3), p 346–351CrossRefGoogle Scholar
  9. 9.
    D.U. Tulyaganov, S. Agathopoulos, H.R. Fernandes, J.M. Ventura, and J.M.F. Ferreira, Preparation and Crystallization of Glasses in the System Tetrasilicic Mica-Uorapatite-Diopside, J. Eur. Ceram. Soc., 2004, 24, p 3521–3528CrossRefGoogle Scholar
  10. 10.
    P. Ducheyne, K.E. Healy, D.W. Grainger, D.W. Hutmacher, and C.J. Kirkpatrick, Comprehensive Biomaterials, Elsevier, Oxford, 2011Google Scholar
  11. 11.
    T. Kokubo, Bioactive Glass-Ceramics Properties and Application, Biomaterials, 1991, 12, p 155–163CrossRefGoogle Scholar
  12. 12.
    T. Kasuga, M. Nogami, and M. Niinomi, Preparation of Calcium Phosphate Glass-Ceramics and Their Coating on Titanium Alloys, Key Eng. Mater., 2001, 192–195, p 223–226Google Scholar
  13. 13.
    R. Bowen, Adhesive Bonding of Various Materials to Hard Tooth Tissues, J. Dent. Res., 1965, 44(5), p 906–911CrossRefGoogle Scholar
  14. 14.
    M. Amirnejad, A. Afshar, and S. Salehi, The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD), J. Mater. Eng. Perform, 2018, 27, p 2338–2344CrossRefGoogle Scholar
  15. 15.
    D. Haverty, S. Tofail, K. Stanton, and J. McMonagle, Structure and Stability of Hydroxyapatite: Density Functional Calculation and Rietveld Analysis, Phys. Rev. B, 2005, 71(9), p 94–103CrossRefGoogle Scholar
  16. 16.
    H. Kim, B. Yoon, Y. Koh, and H. Kim, Processing and Performance of Hydroxyapatite/Fluorapatite Double Layer Coating on Zirconia by the Powder Slurry Method, J. Am. Ceram. Soc., 2006, 89(8), p 2466–2472CrossRefGoogle Scholar
  17. 17.
    T. Kasuga, E. Ueno, and A. Obata, Preparation of Apatite-Containing Calcium Phosphate Glass-Ceramics, Key Eng. Mater., 2007, 330–332, p 157–160CrossRefGoogle Scholar
  18. 18.
    S.K. Yen and C.M. Lin, Cathodic Reactions of Electrolytic Hydroxyapatite Coating on Pure Titanium, Mater. Chem. Phys., 2002, 77, p 70–76CrossRefGoogle Scholar
  19. 19.
    J. Gomez-Vega, E. Saiz, and A. Tomsia, Glass-Based Coatings for Titanium Implant Alloys, J. Biomed. Mater. Res., 1999, 46(4), p 549–559CrossRefGoogle Scholar
  20. 20.
    D.Y. Lin and X.X. Wang, Electrodeposition of Hydroxyapatite Coating on CoNiCrMo Substrate in Dilute Solution, Surf. Coat. Technol., 2010, 204, p 3205–3213CrossRefGoogle Scholar
  21. 21.
    X. Zhao, L. Yang, Y. Zuo, and J. Xiong, Hydroxyapatite Coatings on Titanium Prepared by Electrodeposition in a Modified Simulated Body Fluid, Chin. J. Chem. Eng., 2009, 17(4), p 667–671CrossRefGoogle Scholar
  22. 22.
    A.M. Fathi, H.K. Abd El-Hamid, and M.M. Radwan, Preparation and Characterization of Nano-Tetracalcium Phosphate Coating on Titanium Substrate, Int. J. Electrochem. Sci., 2016, 11, p 3164–3178CrossRefGoogle Scholar
  23. 23.
    K. Stanton and J. Vanhumbeeck, Bioactive Apatite-Mullite Glass-Ceramic Coatings on Titanium Substrates, Adv. Sci. Technol., 2006, 45, p 1275–1280CrossRefGoogle Scholar
  24. 24.
    M. Pourmand and N. Taghavinia, TiO2 Nanostructured Films on Mica Using Liquid Phase Deposition, Mater. Chem. Phys., 2008, 107, p 449–455CrossRefGoogle Scholar
  25. 25.
    K.P. O’Flynn and K.T. Stanton, Laser Sintering and Crystallization of a Bioactive Glass-Ceramic, J. Non-Cryst. Solids, 2013, 360, p 49–56CrossRefGoogle Scholar
  26. 26.
    S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma, and A. Tomsia, Bioactive Glass Coatings for Orthopedic Metallic Implants, J. Eur. Ceram. Soc., 2003, 23(15), p 2921–2930CrossRefGoogle Scholar
  27. 27.
    J. Gomez-Vega, E. Saiz, A. Tomsia, G. Marshall, and S. Marshall, Bioactive Glass Coatings with Hydroxyapatite and Bioglass Particles on Ti-Based Implants. 1. Processing, Biomaterials, 2000, 21(2), p 105–111CrossRefGoogle Scholar
  28. 28.
    M. Montazerian and E.D. Zanotto, Bioactive and Inert Dental Glass-Ceramics, J. Biomed. Mater. Res. A, 2017, 105(2), p 619–639CrossRefGoogle Scholar
  29. 29.
    L. Hallmann, P. Ulmer, and M. Kern, Effect of Microstructure on the Mechanical Properties of Lithium Disilicate Glass-Ceramic, J. Mech. Behav. Biomed. Mater., 2018, 82, p 355–370CrossRefGoogle Scholar
  30. 30.
    T. Uno, T. Kasuga, and S. Nakayama, High Strength Mica-Containing Glass-Ceramics, J. Am. Ceram. Soc., 1991, 74, p 3139–3141CrossRefGoogle Scholar
  31. 31.
    Y. Ohko, Y. Utsumi, C. Niwa, T. Tatsuma, K. Kobayakawa, Y. Satoh, Y. Kubota, and A. Fujishima, Self-sterilizing and Self-cleaning of Silicone Catheters Coated with TiO2 Photocatalyst Thin Films, J. Biomed. Mater. Res., 2001, 58, p 97–101CrossRefGoogle Scholar
  32. 32.
    M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell, and J.H. Evans, Electrophoretic Deposition of Hydroxyapatite Coatings on Metal Substrates: A Nanoparticulate Dual Coating Approach, J. Sol Gel Sci. Technol., 2001, 21, p 39–48CrossRefGoogle Scholar
  33. 33.
    A.W.A. El-Shennawi, M.M. Morsi, G.A. Khater, and S.A.M. Abdel-Hameed, Thermodynamic Investigation of Crystallization Behavior of Pyroxenic Basalt-Based Glasses, J. Therm. Anal., 1998, 50(2), p 206Google Scholar
  34. 34.
    A.W.A. El-Shennawi, M.M. Morsi, and S.A.M. Abdel-Hameed, Effect of Fluoride Nucleating Catalysts on Crystallization of Cordierite from Modified Basalt-Based Glasses, J. Eur. Ceram. Soc., 2007, 27, p 1829–1835CrossRefGoogle Scholar
  35. 35.
    D.B. Dingwell, C.M. Scarfe, and D.J. Cronin, The Effect of Fluorine on Viscosities in the System Na2O-Al2O3-SiO2: Implications for Phonolites, Trachytes and Rhyolites, Am. Mineral., 1985, 70, p 80–87Google Scholar
  36. 36.
    J.H. Simmons, D.R. Uhlmann, and E.H. Beall, Nucleation and Crystallization in Glasses, American Ceramic Society, Columbus, 1982Google Scholar
  37. 37.
    L. Yong, Q. Xiang, Y. Tan, and X. Sheng, Nucleation and Growth of Needle-like Fluorapatite Crystals in Bioactive Glass-Ceramics, J. Non-Cryst. Solids, 2008, 354, p 938–944CrossRefGoogle Scholar
  38. 38.
    S. Taruta, K. Mukoyama, S.S. Suzuki, K. Kitajima, and N. Takusagawa, Crystallization Process and Some Properties of Calcium Mica-Apatite Glass-Ceramics, J. Non-Cryst. Solids, 2001, 296, p 201CrossRefGoogle Scholar
  39. 39.
    X.F. Chen, L.L. Hench, D. Greenspan, J.P. Zhong, and X.K. Zhang, investigation on Phase Separation, Nucleation and Crystallization in Bioactive Glass Ceramics Containing Fluorophlogopite and Fluorapatite, Ceram. Int., 1998, 24, p 401CrossRefGoogle Scholar
  40. 40.
    P. Tarte, Identification of Li-O Bands in the Infrared Spectra of Simple Lithium Compounds Containing LiO4 Tetrahedra, Spectrochim. Acta, 1964, 20, p 238–240571CrossRefGoogle Scholar
  41. 41.
    R. Condrate, Introduction to Glass Science, Plenum Press, New York, 1972, p 101CrossRefGoogle Scholar
  42. 42.
    W. Höland, V. Rheinberger, and M. Frank, Mechanism of Nucleation and Controlled Crystallization of Needle like Apatite in Glass Ceramics of the SiO2-Al2O3-K2O-CaO-P2O5 Systems, J. Non-Cryst. Solids, 1999, 253, p 170CrossRefGoogle Scholar
  43. 43.
    D.P. Mukherjee, A.R. Molla, and S.K. Das, The Influence of MgF2 Content on the Characteristic Improvement of Machinable Glass Ceramics, J. Non-Cryst. Solids, 2016, 433, p 51–59CrossRefGoogle Scholar
  44. 44.
    S.G. Motke, S.P. Yawale, and S.S. Yawale, Infrared Spectra of Zinc Doped Lead Borate Glasses, Bull. Mater. Sci., 2002, 25, p 75–78CrossRefGoogle Scholar
  45. 45.
    F.H. ElBatal, M.A. Ouis, and H.A. ElBatal, Comparative Studies on the Bioactivity of Some Borate Glasses and Glass-Ceramics from the Two Systems: Na2, O-CaO-B2O3 and NaF-CaF2-B2O3, Ceram. Int., 2016, 42, p 8247–8256CrossRefGoogle Scholar
  46. 46.
    A.M. Abdelghany, F.H. ElBatal, and H.A. ElBatal, Zinc Containing Borate Glasses and Glass-Ceramics: Search for Biomedical Applications, Process. Appl. Ceram., 2014, 8(4), p 185–193CrossRefGoogle Scholar
  47. 47.
    M.A. Marzouk and H.A. ElBatal, In Vitro Bioactivity of Soda Lime Borate Glasses with Substituted SrO in Sodium Phosphate Solution, Process. Appl. Ceram., 2014, 8(3), p 167–177CrossRefGoogle Scholar
  48. 48.
    S.P. Singh, K. Pal, A. Tarafder, M. Dsa, K. Annapurna, and B. Karmakar, Effects of SiO2 and TiO2 Fillers on Thermal and Dielectric Properties of Eco-friendly Bismuth Glass Microcomposites of Plasma Display Panels, Bull. Mater. Sci., 2010, 33, p 33–41CrossRefGoogle Scholar
  49. 49.
    T. Furukawa and W.B. White, Raman Spectroscopy of Heat-Treated B2O3-SiO2 Glasses, J. Am. Ceram. Soc., 1981, 64, p 443–447CrossRefGoogle Scholar
  50. 50.
    N.A. Shafi and M.M. Morsi, Optical Absorption and Infrared Studies of Some Silicate Glasses Containing Titanium, J. Mater. Sci., 1997, 32, p 5185–5189CrossRefGoogle Scholar
  51. 51.
    E.M. Khalil and M. Aouf, Effect of Heat Treatment on the Infrared Absorption Spectra of Strontium-Sodium-Borosilicate Glass, Indian J. Eng. Mater. Sci., 1997, 4, p 155–162Google Scholar
  52. 52.
    T. Suzuki, Y. Arai, and Y. Ohishi, Crystallization Processes of Li2O-Ga2O3-SiO2-NiO System Glasses, J. Non-Cryst. Solids, 2007, 353, p 36–43CrossRefGoogle Scholar
  53. 53.
    I. Konidakis, C.-P.E. Varsamis, E.I. Kamitsos, D. Möncke, and D. Ehrt, Structure and Properties of Mixed Strontium-Manganese Metaphosphate Glasses, J. Phys. Chem. C, 2010, 114, p 9125–9138CrossRefGoogle Scholar
  54. 54.
    C. Dayanand, G. Bhikshamaiah, V. Jaya Tyagaraju, M. Salagram, and A.S.R. Krishana Murthy, Structural Investigations of Phosphate Glasses: A Detailed Infrared Study of the x(PbO)-(1 − x) P2O5 Vitreous System, J. Mater. Sci., 1996, 31, p 1945CrossRefGoogle Scholar
  55. 55.
    M. Rafiqul Ahsan, M. Alfaz Uddin, and M. Golam Mortuza, Infrared Study of the Effect of P2O5 in the Structure of Lead Silicate Glasses, Indian J. Pure Appl. Phys., 2005, 43, p 89–99Google Scholar
  56. 56.
    H.A. ElBatal, A.A. ElKheshen, N.A. Ghoneim, M.A. Marzouk, F.H. ElBatal, A.M. Fayad, A.M. Abdelghany, and A.A. El-Beih, In Vitro Bioactivity Behavior of Some Borophosphate Glasses Containing Dopant of ZnO, CuO or SrO Together with their Glass-Ceramic Derivatives and Their Antimicrobial Activity, Silicon, 2019, 11, p 197–208CrossRefGoogle Scholar
  57. 57.
    O.P. Filho, G.P. La Torre, and L.L. Hench, Effect of Crystallization on Apatite-Layer Formation of Bioactive Glass 45S5, J. Biomed. Mater. Res., 1996, 30, p 509–514CrossRefGoogle Scholar
  58. 58.
    T. Uno, T. Kasuga, S. Nakayama, and A.J. Ikushima, Microstructure of Mica-Based Nanocomposite Glass-Ceramic, J. Am. Ceram. Soc., 1993, 76, p 539–541CrossRefGoogle Scholar
  59. 59.
    O. Xiang, Y. Liu, X. Sheng, and X. Dan, Preparation of Mica-Based Glass-Ceramics with Needle-like Fluorapatite, J. Dent. Mater., 2007, 23, p 251–258CrossRefGoogle Scholar
  60. 60.
    J.S. Fernandes, P. Gentile, R.A. Pires, R.L. Reis, and P.V. Hatton, Multifunctional Bioactive Glass and Glass-Ceramic Biomaterials with Antibacterial Properties for Repair and Regeneration of Bone Tissue, Acta Biomater., 2017, 59, p 2–11CrossRefGoogle Scholar
  61. 61.
    W.A. Badawy, K.M. Ismail, and A.M. Fathi, Corrosion Control of Cu-Ni Alloys in Neutral Chloride Solutions by Amino Acids, Electrochim. Acta, 2006, 51, p 4182–4189CrossRefGoogle Scholar
  62. 62.
    D.S. Brauera, N. Karpukhina, M.D. O’Donnell, R.V. Law, and R.G. Hill, Fluoride-Containing Bioactive Glasses: Effect of Glass Design and Structure on Degradation, pH and Apatite Formation in Simulated Body Fluid, Acta Biomater., 2010, 6, p 3275–3282CrossRefGoogle Scholar
  63. 63.
    A. Balamurugan, G. Balossier, J. Michel, and J.M.F. Ferreira, Electrochemical and Structural Evaluation of Functionally Graded Bioglass-Apatite Composites Electrophoretically Deposited onto Ti6Al4V Alloy, Electrochim. Acta, 2009, 54, p 1192CrossRefGoogle Scholar
  64. 64.
    Z.M. Al-Rashidy, M.M. Farag, N.A. Abdel Ghany, A.M. Ibrahim, and Wafa I. Abdel-Fattah, Aqueous Electrophoretic Deposition and Corrosion Protection of Borate Glass Coatings on 316 L Stainless Steel for Hard Tissue Fixation, Surf. Interfaces, 2017, 7, p 125–133CrossRefGoogle Scholar
  65. 65.
    C.Y. Yang, B.C. Wang, E. Chang, and B.C. Wu, Bond Degradation at the Plasma-Sprayed HA Coating/Ti-6AI-4V Alloy Interface: An In Vitro Study, J. Mater. Sci. Mater. Med., 1995, 6, p 258–265CrossRefGoogle Scholar
  66. 66.
    A.R. Boccaccini, S. Keim, R. Ma, Y. Li, and I. Zhitomirsky, Electrophoretic Deposition of Biomaterials, J. R. Soc. Interface, 2010, 7, p S581–S613CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • A. M. Fayad
    • 1
  • A. M. Fathi
    • 2
    Email author
  • A. A. El-Beih
    • 3
  • M. A. Taha
    • 4
  • S. A. M. Abdel-Hameed
    • 1
  1. 1.Glass Research DepartmentNational Research CentreDokki, GizaEgypt
  2. 2.Physical Chemistry DepartmentNational Research CentreDokki, GizaEgypt
  3. 3.Department of Chemistry of Natural and Microbial ProductsNational Research CentreDokki, GizaEgypt
  4. 4.Solid State Physics DepartmentNational Research Centre (NRC)Dokki, GizaEgypt

Personalised recommendations