Effect of Different Forms of Application of a Laser Surface Treatment on Fatigue Crack Growth of an AA6013-T4 Aluminum Alloy

  • C. M. Gonçalves
  • L. B. GodefroidEmail author
  • M. S. F. Lima
  • N. P. Sampaio


This work analyzes the effect of surface-localized laser heating treatment on the fatigue crack growth (FCG) rate on region II of the sigmoidal da/dN × ΔK curve of an aerospace-grade AA6013-T4 aluminum alloy sheet with 1.3 mm thickness. The influence on microstructure changes is also evaluated. Aiming to improve the FCG resistance without changing the mechanical behavior of the alloy, a Yb:fiber laser beam is defocused to generate a laser spot diameter of 2 mm, using 200 W power and a laser speed of 2 mm/s. Two laser lines are applied over fatigue C(T) specimens in two different forms: on only one and on both lateral specimen surfaces. Guinier–Preston zones, dispersoids and coarse constituent particles are found on the base material. On the heat-treated material, the same precipitates and also β′ and Q′ precipitates are found. These microstructural variations due to the laser thermal cycle, together with the presence of induced compressive residual stresses, improved the fatigue behavior of the material. The FCG retardation is optimized when two laser lines were applied on both lateral surfaces of the specimen.


aluminum alloy fatigue crack growth laser surface treatment microstructure residual stresses 



The authors would like to acknowledge the Center of Microscopy at the Universidade Federal de Minas Gerais (Brazil) for providing the equipment and technical support for experiments involving transmission electron microscopy. C.M. Gonçalves would like to acknowledge CAPES for providing her financial support.


  1. 1.
    I. Polmear, D. StJohn, J.F. Nie, and M. Qian, Light Alloys—Metallurgy of the Light Metals, 5th ed., Elsevier, Amsterdam, 2017Google Scholar
  2. 2.
    J.E. Hatch, Aluminum—Properties and Physical Metallurgy, American Society for Metals, Materials Park, 1984Google Scholar
  3. 3.
    R.K. Nalla, I. Altenberger, U. Noster, G.Y. Liu, B. Scholtes, and R.O. Ritchie, On the Influence of Mechanical Surface Treatments—Deep Rolling and Laser Shock Peening—On the Fatigue Behavior of Ti-6Al-4V at Ambient and Elevated Temperatures, Mater. Sci. Eng. A, 2003, 355, p 216–230CrossRefGoogle Scholar
  4. 4.
    C. Rubio-González, J.L. Ocana, G. Gomez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, Effect of Laser Shock Processing on FCG and Fracture Toughness of 6061-T6 Aluminum Alloy, Mater. Sci. Eng. A, 2004, 386, p 291–295CrossRefGoogle Scholar
  5. 5.
    O. Hatamleh, A Comprehensive Investigation on the Effects of Laser and Shot Peening on FCG in Friction Stir Welded AA2195 Joints, Int. J. Fatigue, 2009, 31, p 974–998CrossRefGoogle Scholar
  6. 6.
    K. Ding and Y. Lee, Laser Shock Peening—Performance and Process Simulation, Woodhead Publishing Limited, Sawston, 2006CrossRefGoogle Scholar
  7. 7.
    S. Huang, J.Z. Zhou, J. Sheng, K.Y. Luo, J.Z. Lu, J.C. Xu, X.K. Meng, L. Dai, L.D. Zuo, H.Y. Ruan, and H.S. Chen, Effects of Laser Peening with Different Coverage Areas on FCG Properties of 6061-T6 Aluminum Alloy, Int. J. Fatigue, 2013, 47, p 292–299CrossRefGoogle Scholar
  8. 8.
    Z. Bergant, U. Trdan, and J. Grum, Effects of Laser Shock Processing on High Cycle FCG Rate and Fracture Toughness of Aluminium Alloy 6082-T651, Int. J. Fatigue, 2016, 87, p 444–455CrossRefGoogle Scholar
  9. 9.
    V.K. Saxena, A. Bharti, G. Malakondaiah, and V.M. Radhakrishnan, Effect of Laser Surface Treatment of Fatigue on Crack Growth Resistance in an Fe-Mn-Al Austenitic Steel, Int. J. Fatigue, 1993, 15, p 369–375CrossRefGoogle Scholar
  10. 10.
    L.W. Tsay, Y.C. Liu, D.Y. Lin, and M.C. Young, The Use of Laser Surface-Annealed Treatment to Retard FCG of Austenitic Stainless Steel, Mater. Sci. Eng. A, 2004, 384, p 177–183CrossRefGoogle Scholar
  11. 11.
    R.K. Yee and K.S. Sidhu, Innovative Laser Heating Methodology Study for Crack Growth Retardation in Aircraft Structures, Int. J. Fatigue, 2005, 27, p 245–253CrossRefGoogle Scholar
  12. 12.
    D. Schnubel, Laser Heating as Approach to Retard FCG in Aircraft Aluminium Structures. PhD Thesis. Hamburg’s University. Germany. 2012, p 115Google Scholar
  13. 13.
    D. Schnubel and N. Huber, Retardation of FCG in Aircraft Aluminium Alloys via Laser Heating—Numerical Prediction of FCG, Comput. Mater. Sci., 2012, 65, p 461–469CrossRefGoogle Scholar
  14. 14.
    D. Schnubel, M. Horstmann, V. Ventzke, S. Riekehr, P. Staron, T. Fischer, and N. Huber, Retardation of FCG in Aircraft Aluminium Alloys via Laser Heating—Experimental Proof of Concept, Mater. Sci. Eng. A, 2012, 546, p 8–14CrossRefGoogle Scholar
  15. 15.
    A. Groth, M. Horstmann, N. Kashaev, and N. Huber, Design of Local Heat Treatment for Crack Retardation in Aluminium Alloys. 1st International Conference on Structural Integrity. Procedia Eng., 2015, 114, p 271–276Google Scholar
  16. 16.
    M.C. Cunha and M.S.F. Lima, The Influence of Laser Surface Treatment on the Fatigue Crack Growth of AA2024-T3 Aluminum Alloy Alclad Sheet, Surf. Coat. Technol, 2017, 329, p 244–249CrossRefGoogle Scholar
  17. 17.
    G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper, The Precipitation Sequences in Al-Mg-Si Alloys, Acta Mater., 1998, 46, p 3893–3904CrossRefGoogle Scholar
  18. 18.
    Y.S. Sato, H. Kokawa, M. Enomoto, and S. Jogan, Microstructural Evolution of 6063 Aluminum During Friction-Stir Welding, Metall. Mater. Trans. A, 1999, 30A, p 2429–2437CrossRefGoogle Scholar
  19. 19.
    B. Heinz and B. Skrotzki, Characterization of a Friction-Stir-Welded Aluminum Alloy 6013, Metall. Mater. Trans. B, 2002, 33B, p 489–498CrossRefGoogle Scholar
  20. 20.
    A. Perovic, D.D. Perovic, G.C. Weatherly, and D.J. Lloyd, Precipitation in Aluminum Alloys AA6111 and AA6016, Scr. Mater., 1997, 41, p 703–708CrossRefGoogle Scholar
  21. 21.
    C. Cayron and P.A. Buffat, Transmission Electron Microscopy Study of the β′ Phase (Al-Mg-Si Alloys) and Q′ Phase (Al-Cu-Mg-Si Alloys): Ordering Mechanism and Crystallographic Structure, Acta Mater., 2000, 48, p 2639–2653CrossRefGoogle Scholar
  22. 22.
    D.J. Chakrabarti and D.E. Laughlin, Phase Relations and Precipitation in Al–Mg–Si Alloys with Cu Additions, Prog. Mater. Sci., 2004, 49, p 389–410CrossRefGoogle Scholar
  23. 23.
    M. Bloeck, Aluminium Sheet for Automotive Applications, In: Advanced Materials in Automotive Engineering, Woodhead Publishing, 2012Google Scholar
  24. 24.
    R.H.M. Siqueira, A.C. Oliveira, R. Riva, A.J. Abdalla, C.A.R.P. Baptista, and M.S.F. Lima, Mechanical and Microstructural Characterization of Laser-Welded Joints of 6013-T4 Aluminum Alloy, J. Braz. Soc. Mech. Sci. Eng., 2015, 37(1), p 133–140CrossRefGoogle Scholar
  25. 25.
    S. Suresh, A.K. Vasudévan, and P.E. Bretz, Mechanisms of Slow Fatigue Crack Growth in High Strength Aluminum Alloys: Role of Microstructure and Environment, Metall. Trans. A, 1984, 15A, p 369–379CrossRefGoogle Scholar
  26. 26.
    R.A. Siddiqui, H.A. Abdullah, and K.R. Al-Belushi, Influence of Aging Parameters on the Mechanical Properties of 6063 Aluminium Alloy, J. Mater. Process. Technol., 2000, 102, p 234–240CrossRefGoogle Scholar
  27. 27.
    G.H. Bray, M. Glazov, R.J. Rioja, D. Li, and R.P. Gangloff, Effect of Artificial Aging on the Fatigue Crack Propagation Resistance of 2000 Series Aluminum Alloys, Int. J. Fatigue, 2001, 23(1), p 265–276CrossRefGoogle Scholar
  28. 28.
    Standard Test Method for Microindentation Hardness of Materials 1, E384-17, ASTM, 2018, p 40Google Scholar
  29. 29.
    E. Yanase, K.N. Vlad, M.I.R. Zolotarev, K. Nishio, Y. Kusum, K. Arai, and S. Nakagawa, Sin2Ψ Stress Measurement Method with Maintaining Probing Depth, J. Neurosci. Res., 2001, 9, p 273–279Google Scholar
  30. 30.
    Standard Test Method for Measurement of FCG Rates, E647 – 13, ASTM, 2014, p 49Google Scholar
  31. 31.
    R.A. Jeniski, B. Thanaboonsombut, and T.H. Sanders, The Effect of Iron and Manganese on the Recrystallization Behavior of Hot-Rolled and Solution-Heat-Treated Aluminum Alloy 6013, Mater. Trans. A, 1996, 27, p 19–27CrossRefGoogle Scholar
  32. 32.
    C. Barbosa, J.M.A. Rabello, O. Acselrad, J. Dille, and J.L. Delplancke, Identification of Precipitates in 6013 Aluminum Alloy (Al-Mg-Si-Cu), Z. Metall., 2002, 93, p 208–211CrossRefGoogle Scholar
  33. 33.
    C. Barbosa, J. Dille, J.L. Delplancke, J.M.A. Rabello, and O. Acselrad, A Microstructural Study of Flash Welded and Aged 6061 and 6013 Aluminum Alloy, Mater. Charact., 2006, 57, p 187–192CrossRefGoogle Scholar
  34. 34.
    W.R. Osório, L.C. Peixoto, D.J. Moutinho, L.G. Gomes, I.L. Ferreira, and A. Garcia, Corrosion Resistance of Directionally Solidified Al-6Cu-1Si and Al-8Cu-3Si Alloys Castings, Mater. Des., 2011, 32, p 3832–3837CrossRefGoogle Scholar
  35. 35.
    W.R. Osório, L.R. Garcia, P.R. Goulart, and A. Garcia, Effects of Eutectic Modification and T4 Heat Treatment on Mechanical Properties and Corrosion Resistance of an Al-9 wt%Si Casting Alloy, Mater. Chem. Phys., 2007, 106, p 343–349CrossRefGoogle Scholar
  36. 36.
    W.R. Osório, C.M.A. Freire, and A. Garcia, Effects of the Longitudinal and Transversal Structural Grain Morphologies Upon the Corrosion Resistance of Zinc and Aluminium Specimens, Rev. Metal. Madr., 2005, 41, p 176–180CrossRefGoogle Scholar
  37. 37.
    K.J. Kang, J.H. Song, and Y.Y. Earmme, Fatigue Crack Growth Through a Tensile Residual Stress Field Under Compressive Applied Loading, Fatigue Fract. Engng. Mater. Struct., 1989, 12(5), p 363–376CrossRefGoogle Scholar
  38. 38.
    M. Beghini and L. Bertini, Fatigue Crack Propagation Through Residual Stress Fields with Closure Phenomena, Eng. Fract. Mech., 1990, 36(3), p 379–387CrossRefGoogle Scholar
  39. 39.
    G. Bussu and P.E. Irving, The Role of Residual Stress and Heat Affected Zone Properties on Fatigue Crack Propagation in Friction Stir Welded 2024-T351 Aluminium Joints, Int. J. Fatigue, 2003, 25, p 77–88CrossRefGoogle Scholar
  40. 40.
    L.B. Godefroid, A. Matias, E. Rodrigues, F.L. Bastian, and K.A. Rubaie, Fatigue Crack Growth Resistance and Crack Closure Behavior in Two Aluminum Alloys for Aeronautical Applications, Mater. Res., 2005, 8(3), p 287–291CrossRefGoogle Scholar
  41. 41.
    L.B. Godefroid, E. Barroso, and K.A. Rubaie, Fatigue Crack Growth Analysis of Pre-strained 7475-T7351 Aluminum Alloy, Int. J. Fatigue, 2006, 28(8), p 934–942CrossRefGoogle Scholar
  42. 42.
    K.A. Rubaie, E.K.L. Barroso, and L.B. Godefroid, Statistical Modeling of Fatigue Crack Growth Rate in Pre-strained 7475-T7351 Aluminum Alloy, Mater. Sci. Eng. A, 2008, 486, p 585–595CrossRefGoogle Scholar
  43. 43.
    T.L. Anderson, Fracture Mechanics—Fundamentals and Applications, 3rd ed., CRC Press, Boca Raton, 2005Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • C. M. Gonçalves
    • 1
  • L. B. Godefroid
    • 1
    Email author
  • M. S. F. Lima
    • 1
    • 2
  • N. P. Sampaio
    • 3
  1. 1.REDEMATUniversidade Federal de Ouro PretoOuro PrêtoBrazil
  2. 2.Photonics DivisionInstitute for Advanced StudiesSão José dos CamposBrazil
  3. 3.CM-UFMGUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations