Corrosion Protection of Cu Electrical Cable by W-Ni Composite Coatings Doped with TiO2 Nanoparticles: Influence of Pulse Currents

  • W. SassiEmail author
  • L. Dhouibi
  • J.-Y. Hihn
  • P. Berçot
  • M. Rezrazi
  • S. Ammar


W-Ni-TiO2 nano-composite layers were electrodeposited on copper surface by both direct (DC) and pulse (PC) currents. The copper substrates are samples from the main electrical cable used for the Renault K-Z (the latest 100% electric vehicle). In order to investigate coating morphology, atomic force microscopy was used, while energy-dispersive x-ray analysis was applied to determine nano-composite composition. Based on surface morphology, the W-Ni-TiO2 (DC) alloy surface was covered by massive agglomerates, especially when the W-Ni-TiO2 (PC) nano-composite coating was more compact, thicker and exhibited smaller grain size. The coated surface revealed different contents such as 43.4 and 65.4% of W in DC and PC coatings, respectively, which are considered to be a novel composition of the W-Ni alloy. XRD studies revealed that the NiW2 phase only occurs in the W-Ni-TiO2 (PC) nano-composite alloy. Electrical and thermal conductivities, microhardness and porosity values are enhanced by the addition of TiO2 to the alloy.


co-deposition corrosion protection WNi alloy pulse current TiO2 nanoparticles 



  1. 1.
    M. Ghaderi, M. Rezagholizadeh, A. Heidary, and S.M. Monirvaghefi, The Effect of Al2O3 Nanoparticles on Tribological and Corrosion Behavior of Electroless Ni-B-Al2O3 Composite Coating, Prot. Met. Phys. Chem. Surf., 2016, 52, p 854–858CrossRefGoogle Scholar
  2. 2.
    A.A. Revina, M.A. Kuznetsov, A.M. Chekmarev, E.E. Boyakov, and V.I. Zolotarevskii, Synthesis and Physicochemical Properties of Rhenium Nanoparticles, Prot. Met. Phys. Chem. Surf., 2018, 54, p 43–50CrossRefGoogle Scholar
  3. 3.
    H. Lu and T.I. Khan, Tribological Behavior of Electrodeposited Ni-SnO2 Nanocomposite Coatings on Steel, Surf. Coat. Technol., 2011, 205, p 2871CrossRefGoogle Scholar
  4. 4.
    N. Bertrand, F. Maury, and P. Duverneuil, SnO2 Coated Ni Particles Prepared by Fluidized Bed Chemical Vapor Deposition, Surf. Coat. Technol., 2006, 200, p 6733CrossRefGoogle Scholar
  5. 5.
    X. Zhang, R. Hang, H. Wu, X. Huang, Y. Ma, N. Lin, X. Yao, L. Tian, and B. Tang, Synthesis and Antibacterial Property of Ag-Containing TiO2 Coatings by Combining Magnetron Sputtering with Micro-arc Oxidation, Surf. Coat. Technol., 2013, 235, p 748CrossRefGoogle Scholar
  6. 6.
    A. Katamipour, M. Farzam, and I. Danaee, Effects of Sonication on Anticorrosive and Mechanical Properties of Electrodeposited Ni-Zn-TiO2 Nanocomposite Coatings, Surf. Coat. Technol., 2014, 254, p 358CrossRefGoogle Scholar
  7. 7.
    A. Heidarpour, S. Ahmadifard, and S. Kazemi, On the Al5083-Al2O3-TiO2 Hybrid Surface Nano Composite Produced by Friction Stir Processing, Prot. Met. Phys. Chem. Surf., 2018, 54, p 409–415CrossRefGoogle Scholar
  8. 8.
    G. Parida, D. Chaira, M. Chopkar, and A. Basu, Synthesis and Characterization of Ni-TiO2 Composite Coatings by Electro-co-Deposition, Surf. Coat. Technol., 2011, 205, p 4871CrossRefGoogle Scholar
  9. 9.
    Y. Wan, B. Sun, Z. Xu, and W. Chao, Effect of UV Irradiation on Wear Protection of TiO2 and Ni-Doped TiO2 Coatings, Appl. Surf. Sci., 2012, 258, p 4347CrossRefGoogle Scholar
  10. 10.
    A. Golgoon, M. Aliofkhazrae, and M. Toorani, Nano Composite Protective Coatings Fabricated by Electrostatic Spray Method, Prot. Met. Phys. Chem. Surf., 2018, 54, p 192–221CrossRefGoogle Scholar
  11. 11.
    M. Rakapa, E.E. Kalua, and S. Özkar, Cobalt-Nickel-Phosphorus Supported on Pd-Activated TiO2 (Co-Ni-P/Pd-TiO2) as Cost-Effective and Reusable Catalyst for Hydrogen Generation from Hydrolysis of Alkaline Sodium Borohydride Solution, J. Alloys Compd., 2011, 509, p 7016CrossRefGoogle Scholar
  12. 12.
    F. Li, L. Jiang, J. Du, S. Wang, X. Liu, and F. Zhan, Investigations on Synthesis and Hydrogenation Properties of Mg-20 wt.% Ni-1 wt.% TiO2 Composite Prepared by Reactive Mechanical Alloying, J. Alloys Compd., 2008, 452, p 421CrossRefGoogle Scholar
  13. 13.
    N. Sun, B. Du, F. Liu, P. Si, M. Zhao, X. Zhang, and G. Shi, Influence of Annealing on the Microwave-Absorption Properties of Ni/TiO2 Nanocomposites, J. Alloys Compd., 2013, 577, p 533CrossRefGoogle Scholar
  14. 14.
    L. Elias and A. Chitharanjan Hegde, Electrolytic Synthesis of Ni-W-MWCNT Composite Coating for Alkaline Hydrogen Evolution Reaction, J. Mater. Eng. Perform., 2018, 27, p 1033–1039CrossRefGoogle Scholar
  15. 15.
    N.P. Wasekar, L. Bathini, and G. Sundararajan, Tribological Behavior of Pulsed Electrodeposited Ni-W/SiC Nanocomposites, J. Mater. Eng. Perform., 2018, 27, p 1–10CrossRefGoogle Scholar
  16. 16.
    S.M. Hammadi, R. Kiarasi, M.K. Aliov, A.R. Sabur, and A.H. Tabrizi, Study of Corrosion Resistance and Nanostructure for Tertiary Al2O3/Y2O3/CNT Pulse Electrodeposited Ni-Based Nanocomposite, Trans. Inst. Metal Finish., 2010, 88(2), p 93CrossRefGoogle Scholar
  17. 17.
    N. Imaz, E. Garcia-Lecina, and J.A. Diez, Corrosion Properties of Double Layer Nickel Coatings Obtained by Pulse Plating Techniques, Trans. Inst. Metal Finish., 2010, 88(5), p 256CrossRefGoogle Scholar
  18. 18.
    W. Sassi, L. Dhouibi, P. Berçot, and M. Rezrazi, The Effect of SiO2 Nanoparticles on Physico-Chemical Properties of Modified Ni-W Nano Composite Coatings, Appl. Surf. Sci., 2015, 324, p 369CrossRefGoogle Scholar
  19. 19.
    N.S. Qu, D. Zhu, K.C. Chan, and W.N. Lei, Pulse Electrodeposition of Nanocrystalline Nickel Using Ultra Narrow Pulse Width and High Peak Current Density, Surf. Coat. Technol., 2003, 168, p 123CrossRefGoogle Scholar
  20. 20.
    T. Song and D.Y. Li, Tribological, Mechanical and Electrochemical Properties of Nanocrystalline Copper Deposits Produced by Pulse Electro-Deposition, Nanotechnology, 2006, 17, p 65CrossRefGoogle Scholar
  21. 21.
    T. Borkar and S.P. Harimkar, Effect of Electrodeposition Conditions and Reinforcement Content on Microstructure and Tribological Properties of Nickel Composite Coatings, Surf. Coat. Technol., 2011, 205, p 4124CrossRefGoogle Scholar
  22. 22.
    M.A. Khazrayie and A.R. Aghdam, Si3N4/Ni Nano Composite Formed by Electroplating: Effect of Average Size of Nanoparticulates, Trans. Nonferr. Met. Soc. China, 2010, 20, p 1017CrossRefGoogle Scholar
  23. 23.
    I.R. Mafi and C. Dehghanian, Studying the Effects of the Addition of TiN Nanoparticles to Ni-P Electroless Coatings, Appl. Surf. Sci., 2011, 258, p 1876CrossRefGoogle Scholar
  24. 24.
    S. Oktay, Z. Kahraman, M. Urgen, and K. Kazmanli, XPS Investigations of Tribolayers Formed on TiN and (Ti, Re)N Coatings, Appl. Surf. Sci., 2015, 328, p 255CrossRefGoogle Scholar
  25. 25.
    K.H. Hou and Y.C. Chen, Preparation and Wear Resistance of Pulse Electrodeposited Ni-W/Al2O3 Composite Coatings, Appl. Surf. Sci., 2011, 257, p 6340CrossRefGoogle Scholar
  26. 26.
    M.F. Cardinal, P.A. Castro, J. Baxi, H. Liang, and F.J. Williams, Characterization and Frictional Behavior of Nanostructured Ni-W-MoS2 Composite Coatings, Surf. Coat. Technol., 2009, 204, p 85CrossRefGoogle Scholar
  27. 27.
    M. Aliofkhazraei, S. Ahangarani, and A.S. Rouhaghdam, Effect of the Duty Cycle of Pulsed Current on Nano Composite Layers Formed by Pulsed Electrodeposition, Rare Met., 2010, 29(2), p 209CrossRefGoogle Scholar
  28. 28.
    W. Sassi, L. Dhouibi, P. Berçot, and M. Rezrazi, Sensitivity of the Ni-W Nanocomposite Doped Amorphous Nano-SiO2 Particles to Electrolysis pH, J. Mater. Environ. Sci., 2015, 6(7), p 1801Google Scholar
  29. 29.
    W. Sassi, L. Dhouibi, P. Berçot, M. Rezrazi, and E. Triki, Comparative study of Protective Nickel-Tungsten Deposit Behavior Obtained by Continuous and Pulsed Currents from Citrate-Ammonia Media, Surf. Coat. Technol., 2012, 206, p 4235CrossRefGoogle Scholar
  30. 30.
    W. Sassi, L. Dhouibi, P. Berçot, M. Rezrazi, and E. Triki, Study of the Electroplating Mechanism and Physico-Chemical Properties of Deposited Ni-W-Silicate Composite Alloy, Eletrochim. Acta, 2014, 117, p 443CrossRefGoogle Scholar
  31. 31.
    W. Sassi, Etude de l’effet des inhibiteurs et des nanoparticules sur les propriétés physico-chimiques et sur la résistance à la corrosion des revêtements électrolytiques Ni-W. Thèse de Doctorat, Université de Franche-Comté, France 2014;Chapitre III:159.Google Scholar
  32. 32.
    P. Leroy, N. Devau, A. Revil, and M. Bizi, Influence of Surface Conductivity on the Apparent Zeta Potential of Amorphous Silica Nanoparticles, J. Colloid Interface Sci., 2013, 410, p 81CrossRefGoogle Scholar
  33. 33.
    R. Sprycha, Electrical Double Layer at Alumina/Electrolyte Interface: I. Surface Charge and Zeta Potential, J. Colloid Interface Sci., 1989, 127, p 1CrossRefGoogle Scholar
  34. 34.
    J. Lewandowska-Lancucka, M. Staszewska, M. Szuwarzynski, M. Kępczynski, M. Romek, W. Tokarz, A. Szpak, G. Kania, and M. Nowakowska, Synthesis and Characterization of the Superparamagnetic Iron Oxide Nanoparticles Modified with Cationic Chitosan and Coated with Silica Shell, J. Alloys Compd., 2014, 586, p 45CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • W. Sassi
    • 1
    • 3
    Email author
  • L. Dhouibi
    • 2
  • J.-Y. Hihn
    • 3
  • P. Berçot
    • 3
  • M. Rezrazi
    • 3
  • S. Ammar
    • 1
  1. 1.Unité de Recherche Electrochimie, Matériaux et Environnement UREME (UR17ES45), Faculté des Sciences de GabèsUniversité de GabèsGabèsTunisia
  2. 2.ENIT, Equipe de recherche Corrosion et Protection des Métalliques, Unité de Recherche énergétique-mécaniqueUniversité de Tunis El ManarBelvédèreTunisia
  3. 3.Institut UTINAMUMR 6214 CNRS Univ. Bourgogne Franche-ComtéBesançonFrance

Personalised recommendations